File size: 2,114 Bytes
e89c667 1e6ccdc e89c667 1e6ccdc e89c667 1e6ccdc 1768ec2 e89c667 1768ec2 e89c667 1e6ccdc e89c667 1e6ccdc e89c667 1768ec2 e89c667 1e6ccdc 1768ec2 1e6ccdc e89c667 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
import gradio as gr
import requests
import base64
from PIL import Image
from io import BytesIO
from dotenv import load_dotenv
import os
import deepl
load_dotenv()
ENDPOINT_URL = "https://api.runpod.ai/v2/qkqui1t394hjws/runsync"
INFERENCE_API_KEY = os.getenv("INFERENCE_API_KEY")
TRANSLATE_API_KEY = os.getenv("TRANSLATE_API_KEY")
def encode_image_to_base64(image):
buffered = BytesIO()
image.save(buffered, format="JPEG")
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
return img_str
def translate_en_to_ko(text):
translator = deepl.Translator(TRANSLATE_API_KEY)
try:
result = translator.translate_text(text, target_lang="KO")
return result.text
except deepl.DeepLException as e:
return f"λ²μ μ€ μ€λ₯ λ°μ: {str(e)}"
def critic_image(image, language, category):
img_base64 = encode_image_to_base64(image)
payload = {
"input": {
"max_new_tokens": 512,
"category": category,
"image": img_base64
}
}
headers = {
"Authorization": INFERENCE_API_KEY,
"Content-Type": "application/json"
}
response = requests.post(ENDPOINT_URL, json=payload, headers=headers)
result = response.json()
analysis_result = result['output']['result'].strip()
if language == "KO":
return translate_en_to_ko(analysis_result) # νκ΅μ΄λ‘ λ²μ ν λ°ν
else:
return analysis_result # μμ΄ κ·Έλλ‘ λ°ν
categories = [
'General Visual Analysis', 'Form and Shape', 'Symbolism and Iconography',
'Composition', 'Color Palette', 'Light and Shadow', 'Texture',
'Movement and Gesture', 'Line Quality', 'Perspective', 'Scale and Proportion'
]
demo = gr.Interface(
fn=critic_image,
inputs=[
gr.Image(type="pil"),
gr.Radio(choices=["EN", "KO"], label="Select Language", value="EN"),
gr.Dropdown(choices=categories, label="Select Category", value="General Visual Analysis")
],
outputs="text",
title="Gemmarte",
description="Upload an image and get a visual analysis in text form from the Gemmarte model."
)
if __name__ == "__main__":
demo.launch() |