someee
commited on
feat: Add optimized train script with fp16 precision
Browse files- Add new file for optimized training using fp16
- Changed bfp16 to fp16 in model initialization and training arguments
- Updated collate_fn to use fp16 instead of bfp16
- article_base_train_fp16.py +169 -0
article_base_train_fp16.py
ADDED
@@ -0,0 +1,169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os, time, math
|
2 |
+
import pandas as pd
|
3 |
+
from datasets import Dataset
|
4 |
+
from transformers import PaliGemmaProcessor, PaliGemmaForConditionalGeneration, BitsAndBytesConfig, TrainingArguments, Trainer
|
5 |
+
import torch
|
6 |
+
from PIL import Image
|
7 |
+
from peft import get_peft_model, LoraConfig
|
8 |
+
import argparse
|
9 |
+
|
10 |
+
|
11 |
+
def load_custom_dataset_from_csv(csv_file, image_folder):
|
12 |
+
data = pd.read_csv(csv_file)
|
13 |
+
|
14 |
+
questions = data['question'].tolist()
|
15 |
+
images = [os.path.join(image_folder, img) for img in data['image'].tolist()]
|
16 |
+
answers = data['answer'].tolist()
|
17 |
+
|
18 |
+
return Dataset.from_dict({
|
19 |
+
'question': questions,
|
20 |
+
'image': images,
|
21 |
+
'answer': answers
|
22 |
+
})
|
23 |
+
|
24 |
+
|
25 |
+
def load_custom_dataset_from_parquet(parquet_file, image_folder):
|
26 |
+
data = pd.read_parquet(parquet_file)
|
27 |
+
|
28 |
+
questions = data['question'].tolist()
|
29 |
+
images = [os.path.join(image_folder, img) for img in data['image'].tolist()]
|
30 |
+
answers = data['answer'].tolist()
|
31 |
+
|
32 |
+
return Dataset.from_dict({
|
33 |
+
'question': questions,
|
34 |
+
'image': images,
|
35 |
+
'answer': answers
|
36 |
+
})
|
37 |
+
|
38 |
+
|
39 |
+
def load_dataset_by_type(metadata_type, dataset_dir, image_folder):
|
40 |
+
if metadata_type == "csv":
|
41 |
+
return load_custom_dataset_from_csv(
|
42 |
+
os.path.join(dataset_dir, 'train_samples.csv'),
|
43 |
+
image_folder
|
44 |
+
)
|
45 |
+
elif metadata_type == "parquet":
|
46 |
+
return load_custom_dataset_from_parquet(
|
47 |
+
os.path.join(dataset_dir, 'train.parquet'),
|
48 |
+
image_folder
|
49 |
+
)
|
50 |
+
else:
|
51 |
+
raise ValueError("Unsupported metadata type. Use 'csv' or 'parquet'.")
|
52 |
+
|
53 |
+
|
54 |
+
def load_model_and_args(use_qlora, model_id, device, output_dir):
|
55 |
+
if use_qlora:
|
56 |
+
bnb_config = BitsAndBytesConfig(
|
57 |
+
load_in_4bit=True,
|
58 |
+
bnb_4bit_quant_type="nf4",
|
59 |
+
bnb_4bit_compute_dtype=torch.float16 # Changed from bfloat16 to float16
|
60 |
+
)
|
61 |
+
lora_config = LoraConfig(
|
62 |
+
r=8,
|
63 |
+
target_modules=["q_proj", "o_proj", "k_proj", "v_proj", "gate_proj", "up_proj", "down_proj"],
|
64 |
+
task_type="CAUSAL_LM"
|
65 |
+
)
|
66 |
+
|
67 |
+
model = PaliGemmaForConditionalGeneration.from_pretrained(model_id, quantization_config=bnb_config, device_map={"": 0})
|
68 |
+
model = get_peft_model(model, lora_config)
|
69 |
+
model.print_trainable_parameters()
|
70 |
+
|
71 |
+
args = TrainingArguments(
|
72 |
+
output_dir=os.path.join(output_dir, f"{math.floor(time.time())}"),
|
73 |
+
num_train_epochs=2,
|
74 |
+
remove_unused_columns=False,
|
75 |
+
per_device_train_batch_size=1,
|
76 |
+
gradient_accumulation_steps=4,
|
77 |
+
warmup_steps=2,
|
78 |
+
learning_rate=2e-5,
|
79 |
+
weight_decay=1e-6,
|
80 |
+
logging_steps=100,
|
81 |
+
optim="adamw_hf",
|
82 |
+
save_strategy="steps",
|
83 |
+
save_steps=1000,
|
84 |
+
save_total_limit=1,
|
85 |
+
fp16=True, # Changed from bf16 to fp16
|
86 |
+
report_to=["tensorboard"],
|
87 |
+
dataloader_pin_memory=False
|
88 |
+
)
|
89 |
+
|
90 |
+
return model, args
|
91 |
+
else:
|
92 |
+
model = PaliGemmaForConditionalGeneration.from_pretrained(model_id, torch_dtype=torch.float16).to(device) # Changed from bfloat16 to float16
|
93 |
+
for param in model.vision_tower.parameters():
|
94 |
+
param.requires_grad = False
|
95 |
+
|
96 |
+
for param in model.multi_modal_projector.parameters():
|
97 |
+
param.requires_grad = True
|
98 |
+
|
99 |
+
args = TrainingArguments(
|
100 |
+
output_dir=os.path.join(output_dir, f"{math.floor(time.time())}"),
|
101 |
+
num_train_epochs=2,
|
102 |
+
remove_unused_columns=False,
|
103 |
+
per_device_train_batch_size=4,
|
104 |
+
gradient_accumulation_steps=4,
|
105 |
+
warmup_steps=2,
|
106 |
+
learning_rate=2e-5,
|
107 |
+
weight_decay=1e-6,
|
108 |
+
logging_steps=100,
|
109 |
+
optim="paged_adamw_8bit",
|
110 |
+
save_strategy="steps",
|
111 |
+
save_steps=1000,
|
112 |
+
save_total_limit=1,
|
113 |
+
fp16=True, # Changed from bf16 to fp16
|
114 |
+
report_to=["tensorboard"],
|
115 |
+
dataloader_pin_memory=False
|
116 |
+
)
|
117 |
+
|
118 |
+
return model, args
|
119 |
+
|
120 |
+
|
121 |
+
def main(args):
|
122 |
+
dataset_dir = args.dataset_dir
|
123 |
+
model_id = args.model_id
|
124 |
+
output_dir = args.output_dir
|
125 |
+
metadata_type = args.metadata_type
|
126 |
+
|
127 |
+
dataset = load_dataset_by_type(metadata_type, dataset_dir, os.path.join(dataset_dir, 'images'))
|
128 |
+
train_val_split = dataset.train_test_split(test_size=0.1)
|
129 |
+
|
130 |
+
train_ds = train_val_split['train']
|
131 |
+
val_ds = train_val_split['test']
|
132 |
+
|
133 |
+
processor = PaliGemmaProcessor.from_pretrained(model_id)
|
134 |
+
device = "cuda"
|
135 |
+
|
136 |
+
model, args = load_model_and_args(args.use_qlora, model_id, device, output_dir)
|
137 |
+
|
138 |
+
def collate_fn(examples):
|
139 |
+
texts = [example["question"] for example in examples]
|
140 |
+
labels = [example['answer'] for example in examples]
|
141 |
+
images = [Image.open(example['image']).convert("RGB") for example in examples]
|
142 |
+
tokens = processor(text=texts, images=images, suffix=labels, return_tensors="pt", padding="longest")
|
143 |
+
tokens = tokens.to(torch.float16).to(device) # Changed from bfloat16 to float16
|
144 |
+
return tokens
|
145 |
+
|
146 |
+
trainer = Trainer(
|
147 |
+
model=model,
|
148 |
+
train_dataset=train_ds,
|
149 |
+
eval_dataset=val_ds,
|
150 |
+
data_collator=collate_fn,
|
151 |
+
args=args
|
152 |
+
)
|
153 |
+
|
154 |
+
trainer.train()
|
155 |
+
|
156 |
+
|
157 |
+
def parse_args():
|
158 |
+
parser = argparse.ArgumentParser(description="Train a model with custom dataset")
|
159 |
+
parser.add_argument('--dataset_dir', type=str, default='./dataset', help='Path to the folder containing the images')
|
160 |
+
parser.add_argument('--model_id', type=str, default='google/paligemma-3b-pt-224', help='Model ID to use for training')
|
161 |
+
parser.add_argument('--output_dir', type=str, default='./output', help='Directory to save the output')
|
162 |
+
parser.add_argument('--use_qlora', type=bool, default=False, help='Use QLoRA for training')
|
163 |
+
parser.add_argument('--metadata_type', type=str, default='parquet', choices=['csv', 'parquet'], help='Metadata format (csv or parquet)')
|
164 |
+
return parser.parse_args()
|
165 |
+
|
166 |
+
|
167 |
+
if __name__ == "__main__":
|
168 |
+
args = parse_args()
|
169 |
+
main(args)
|