Spaces:
Running
Running
import gradio as gr | |
import matplotlib.pyplot as plt | |
import numpy as np | |
from PIL import Image | |
import cv2 | |
import torch | |
import facer | |
from typing import Tuple | |
import torchvision.transforms as transforms | |
def process_image(input_image: np.ndarray) -> np.ndarray: | |
""" | |
Process the input image to apply face smoothing effect. | |
Args: | |
input_image (np.ndarray): Input image in numpy array format | |
Returns: | |
np.ndarray: Processed image with smoothing effect applied to face | |
""" | |
device = 'cpu' | |
# Convert numpy array to PIL Image and back to ensure correct format | |
input_pil = Image.fromarray(input_image) | |
transform = transforms.Compose([transforms.PILToTensor()]) | |
# Convert image to format expected by facer | |
image = facer.hwc2bchw(transform(input_pil).permute(1, 2, 0)).to(device=device) | |
# Initialize face detector | |
face_detector = facer.face_detector('retinaface/mobilenet', device=device) | |
# Detect faces | |
with torch.inference_mode(): | |
faces = face_detector(image) | |
# Initialize face parser | |
face_parser = facer.face_parser('farl/lapa/448', device=device) | |
# Parse face features | |
with torch.inference_mode(): | |
faces = face_parser(image, faces) | |
# Process nose segment | |
nose_array = np.array(faces['seg']['logits'][0][6]) | |
nose_array = np.where(nose_array > 0, 1, 0) | |
# Process face segment | |
face_array = np.array(faces['seg']['logits'][0][1]) | |
face_array = np.where(face_array > 0, 1, 0) | |
# Combine face and nose arrays | |
face_array = np.clip(face_array + nose_array, 0, 1) | |
# Apply bilateral filter for smoothing | |
smooth_img = cv2.bilateralFilter(input_image, 30, 75, 75) | |
# Apply smoothing only to face region | |
smooth_img[face_array == 0] = input_image[face_array == 0] | |
return smooth_img | |
def smooth_face(input_img) -> Tuple[np.ndarray, str]: | |
""" | |
Gradio interface function to process the image and handle errors. | |
Args: | |
input_img: Input image from Gradio interface | |
Returns: | |
Tuple[np.ndarray, str]: Processed image and status message | |
""" | |
try: | |
processed_img = process_image(input_img) | |
return processed_img, "Face smoothing applied successfully!" | |
except ValueError as e: | |
return input_img, str(e) | |
except Exception as e: | |
return input_img, f"Error processing image: {str(e)}" | |
# Create Gradio interface | |
iface = gr.Interface( | |
fn=smooth_face, | |
inputs=gr.Image(type="numpy"), | |
outputs=[ | |
gr.Image(type="numpy", label="Processed Image"), | |
gr.Textbox(label="Status") | |
], | |
title="Face Smoothing App", | |
description="Upload an image to apply face smoothing effect. The app will detect faces and apply smoothing only to the face region | Video tutorial - https://youtu.be/tY1u3XErmfg?si=cRWmA7iyQsNEdIBo", | |
examples=["face-4.jpg"] # Add example images here if you have any | |
) | |
# Launch the app | |
if __name__ == "__main__": | |
iface.launch() |