Spaces:
Runtime error
Runtime error
Added updater code
Browse files
README.md
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
---
|
2 |
-
title: Leaderboard Updater
|
3 |
-
emoji:
|
4 |
colorFrom: gray
|
5 |
colorTo: red
|
6 |
sdk: gradio
|
@@ -11,4 +11,4 @@ license: mit
|
|
11 |
short_description: The process to update my copy of the leaderboard dataset
|
12 |
---
|
13 |
|
14 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: Deep Reinforcement Learning Leaderboard Updater
|
3 |
+
emoji: π
|
4 |
colorFrom: gray
|
5 |
colorTo: red
|
6 |
sdk: gradio
|
|
|
11 |
short_description: The process to update my copy of the leaderboard dataset
|
12 |
---
|
13 |
|
14 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,184 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import requests
|
4 |
+
|
5 |
+
import pandas as pd
|
6 |
+
from huggingface_hub import HfApi, hf_hub_download, snapshot_download
|
7 |
+
from huggingface_hub.repocard import metadata_load
|
8 |
+
from tqdm.contrib.concurrent import thread_map
|
9 |
+
from apscheduler.schedulers.background import BackgroundScheduler
|
10 |
+
|
11 |
+
from tqdm.contrib.concurrent import thread_map
|
12 |
+
|
13 |
+
DATASET_REPO_URL = "https://huggingface.co/datasets/pkalkman/drlc-leaderboard-data"
|
14 |
+
DATASET_REPO_ID = "pkalkman/drlc-leaderboard-data"
|
15 |
+
HF_TOKEN = os.environ.get("HF_TOKEN")
|
16 |
+
|
17 |
+
api = HfApi(token=HF_TOKEN)
|
18 |
+
|
19 |
+
|
20 |
+
# Read the environments from the JSON file
|
21 |
+
with open('envs.json', 'r') as f:
|
22 |
+
rl_envs = json.load(f)
|
23 |
+
|
24 |
+
|
25 |
+
def download_leaderboard_dataset():
|
26 |
+
# Download the dataset from the Hugging Face Hub
|
27 |
+
path = snapshot_download(repo_id=DATASET_REPO_ID, repo_type="dataset")
|
28 |
+
return path
|
29 |
+
|
30 |
+
|
31 |
+
def get_metadata(model_id):
|
32 |
+
try:
|
33 |
+
readme_path = hf_hub_download(model_id, filename="README.md", etag_timeout=180)
|
34 |
+
return metadata_load(readme_path)
|
35 |
+
except requests.exceptions.HTTPError:
|
36 |
+
# 404 README.md not found
|
37 |
+
return None
|
38 |
+
|
39 |
+
|
40 |
+
def parse_metrics_accuracy(meta):
|
41 |
+
if "model-index" not in meta:
|
42 |
+
return None
|
43 |
+
result = meta["model-index"][0]["results"]
|
44 |
+
metrics = result[0]["metrics"]
|
45 |
+
accuracy = metrics[0]["value"]
|
46 |
+
return accuracy
|
47 |
+
|
48 |
+
|
49 |
+
# We keep the worst case episode
|
50 |
+
def parse_rewards(accuracy):
|
51 |
+
default_std = -1000
|
52 |
+
default_reward = -1000
|
53 |
+
if accuracy is not None:
|
54 |
+
accuracy = str(accuracy)
|
55 |
+
parsed = accuracy.split('+/-')
|
56 |
+
if len(parsed) > 1:
|
57 |
+
mean_reward = float(parsed[0].strip())
|
58 |
+
std_reward = float(parsed[1].strip())
|
59 |
+
elif len(parsed) == 1: # only mean reward
|
60 |
+
mean_reward = float(parsed[0].strip())
|
61 |
+
std_reward = float(0)
|
62 |
+
else:
|
63 |
+
mean_reward = float(default_std)
|
64 |
+
std_reward = float(default_reward)
|
65 |
+
|
66 |
+
else:
|
67 |
+
mean_reward = float(default_std)
|
68 |
+
std_reward = float(default_reward)
|
69 |
+
return mean_reward, std_reward
|
70 |
+
|
71 |
+
|
72 |
+
def get_model_ids(rl_env):
|
73 |
+
api = HfApi()
|
74 |
+
models = api.list_models(filter=rl_env)
|
75 |
+
model_ids = [x.modelId for x in models]
|
76 |
+
return model_ids
|
77 |
+
|
78 |
+
|
79 |
+
# Parralelized version
|
80 |
+
def update_leaderboard_dataset_parallel(rl_env, path):
|
81 |
+
# Get model ids associated with rl_env
|
82 |
+
model_ids = get_model_ids(rl_env)
|
83 |
+
|
84 |
+
def process_model(model_id):
|
85 |
+
meta = get_metadata(model_id)
|
86 |
+
# LOADED_MODEL_METADATA[model_id] = meta if meta is not None else ''
|
87 |
+
if meta is None:
|
88 |
+
return None
|
89 |
+
user_id = model_id.split('/')[0]
|
90 |
+
row = {}
|
91 |
+
row["User"] = user_id
|
92 |
+
row["Model"] = model_id
|
93 |
+
accuracy = parse_metrics_accuracy(meta)
|
94 |
+
mean_reward, std_reward = parse_rewards(accuracy)
|
95 |
+
mean_reward = mean_reward if not pd.isna(mean_reward) else 0
|
96 |
+
std_reward = std_reward if not pd.isna(std_reward) else 0
|
97 |
+
row["Results"] = mean_reward - std_reward
|
98 |
+
row["Mean Reward"] = mean_reward
|
99 |
+
row["Std Reward"] = std_reward
|
100 |
+
return row
|
101 |
+
|
102 |
+
data = list(thread_map(process_model, model_ids, desc="Processing models"))
|
103 |
+
|
104 |
+
# Filter out None results (models with no metadata)
|
105 |
+
data = [row for row in data if row is not None]
|
106 |
+
|
107 |
+
ranked_dataframe = rank_dataframe(pd.DataFrame.from_records(data))
|
108 |
+
new_history = ranked_dataframe
|
109 |
+
file_path = path + "/" + rl_env + ".csv"
|
110 |
+
new_history.to_csv(file_path, index=False)
|
111 |
+
|
112 |
+
return ranked_dataframe
|
113 |
+
|
114 |
+
|
115 |
+
def update_leaderboard_dataset(rl_env, path):
|
116 |
+
# Get model ids associated with rl_env
|
117 |
+
model_ids = get_model_ids(rl_env)
|
118 |
+
data = []
|
119 |
+
for model_id in model_ids:
|
120 |
+
"""
|
121 |
+
readme_path = hf_hub_download(model_id, filename="README.md")
|
122 |
+
meta = metadata_load(readme_path)
|
123 |
+
"""
|
124 |
+
meta = get_metadata(model_id)
|
125 |
+
# LOADED_MODEL_METADATA[model_id] = meta if meta is not None else ''
|
126 |
+
if meta is None:
|
127 |
+
continue
|
128 |
+
user_id = model_id.split('/')[0]
|
129 |
+
row = {}
|
130 |
+
row["User"] = user_id
|
131 |
+
row["Model"] = model_id
|
132 |
+
accuracy = parse_metrics_accuracy(meta)
|
133 |
+
mean_reward, std_reward = parse_rewards(accuracy)
|
134 |
+
mean_reward = mean_reward if not pd.isna(mean_reward) else 0
|
135 |
+
std_reward = std_reward if not pd.isna(std_reward) else 0
|
136 |
+
row["Results"] = mean_reward - std_reward
|
137 |
+
row["Mean Reward"] = mean_reward
|
138 |
+
row["Std Reward"] = std_reward
|
139 |
+
data.append(row)
|
140 |
+
|
141 |
+
ranked_dataframe = rank_dataframe(pd.DataFrame.from_records(data))
|
142 |
+
new_history = ranked_dataframe
|
143 |
+
file_path = path + "/" + rl_env + ".csv"
|
144 |
+
new_history.to_csv(file_path, index=False)
|
145 |
+
|
146 |
+
return ranked_dataframe
|
147 |
+
|
148 |
+
|
149 |
+
def get_data_no_html(rl_env, path) -> pd.DataFrame:
|
150 |
+
"""
|
151 |
+
Get data from rl_env
|
152 |
+
:return: data as a pandas DataFrame
|
153 |
+
"""
|
154 |
+
csv_path = path + "/" + rl_env + ".csv"
|
155 |
+
data = pd.read_csv(csv_path)
|
156 |
+
|
157 |
+
return data
|
158 |
+
|
159 |
+
|
160 |
+
def rank_dataframe(dataframe):
|
161 |
+
dataframe = dataframe.sort_values(by=['Results', 'User', 'Model'], ascending=False)
|
162 |
+
if 'Ranking' not in dataframe.columns:
|
163 |
+
dataframe.insert(0, 'Ranking', [i for i in range(1, len(dataframe) + 1)])
|
164 |
+
else:
|
165 |
+
dataframe['Ranking'] = [i for i in range(1, len(dataframe) + 1)]
|
166 |
+
return dataframe
|
167 |
+
|
168 |
+
|
169 |
+
def run_update_dataset():
|
170 |
+
path_ = download_leaderboard_dataset()
|
171 |
+
for i in range(0, len(rl_envs)):
|
172 |
+
rl_env = rl_envs[i]
|
173 |
+
update_leaderboard_dataset_parallel(rl_env["rl_env"], path_)
|
174 |
+
|
175 |
+
api.upload_folder(
|
176 |
+
folder_path=path_,
|
177 |
+
repo_id="pkalkman/drlc-leaderboard-data",
|
178 |
+
repo_type="dataset",
|
179 |
+
commit_message="Update dataset")
|
180 |
+
|
181 |
+
|
182 |
+
scheduler = BackgroundScheduler()
|
183 |
+
scheduler.add_job(run_update_dataset, 'interval', seconds=10800)
|
184 |
+
scheduler.start()
|
envs.json
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"rl_env_beautiful": "LunarLander-v2 π",
|
4 |
+
"rl_env": "LunarLander-v2",
|
5 |
+
"video_link": "",
|
6 |
+
"global": null
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"rl_env_beautiful": "CartPole-v1",
|
10 |
+
"rl_env": "CartPole-v1",
|
11 |
+
"video_link": "",
|
12 |
+
"global": null
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"rl_env_beautiful": "FrozenLake-v1-4x4-no_slippery βοΈ",
|
16 |
+
"rl_env": "FrozenLake-v1-4x4-no_slippery",
|
17 |
+
"video_link": "",
|
18 |
+
"global": null
|
19 |
+
},
|
20 |
+
{
|
21 |
+
"rl_env_beautiful": "FrozenLake-v1-8x8-no_slippery βοΈ",
|
22 |
+
"rl_env": "FrozenLake-v1-8x8-no_slippery",
|
23 |
+
"video_link": "",
|
24 |
+
"global": null
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"rl_env_beautiful": "FrozenLake-v1-4x4 βοΈ",
|
28 |
+
"rl_env": "FrozenLake-v1-4x4",
|
29 |
+
"video_link": "",
|
30 |
+
"global": null
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"rl_env_beautiful": "FrozenLake-v1-8x8 βοΈ",
|
34 |
+
"rl_env": "FrozenLake-v1-8x8",
|
35 |
+
"video_link": "",
|
36 |
+
"global": null
|
37 |
+
},
|
38 |
+
{
|
39 |
+
"rl_env_beautiful": "Taxi-v3 π",
|
40 |
+
"rl_env": "Taxi-v3",
|
41 |
+
"video_link": "",
|
42 |
+
"global": null
|
43 |
+
},
|
44 |
+
{
|
45 |
+
"rl_env_beautiful": "CarRacing-v0 ποΈ",
|
46 |
+
"rl_env": "CarRacing-v0",
|
47 |
+
"video_link": "",
|
48 |
+
"global": null
|
49 |
+
},
|
50 |
+
{
|
51 |
+
"rl_env_beautiful": "CarRacing-v2 ποΈ",
|
52 |
+
"rl_env": "CarRacing-v2",
|
53 |
+
"video_link": "",
|
54 |
+
"global": null
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"rl_env_beautiful": "MountainCar-v0 β°οΈ",
|
58 |
+
"rl_env": "MountainCar-v0",
|
59 |
+
"video_link": "",
|
60 |
+
"global": null
|
61 |
+
},
|
62 |
+
{
|
63 |
+
"rl_env_beautiful": "SpaceInvadersNoFrameskip-v4 πΎ",
|
64 |
+
"rl_env": "SpaceInvadersNoFrameskip-v4",
|
65 |
+
"video_link": "",
|
66 |
+
"global": null
|
67 |
+
},
|
68 |
+
{
|
69 |
+
"rl_env_beautiful": "PongNoFrameskip-v4 πΎ",
|
70 |
+
"rl_env": "PongNoFrameskip-v4",
|
71 |
+
"video_link": "",
|
72 |
+
"global": null
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"rl_env_beautiful": "BreakoutNoFrameskip-v4 π§±",
|
76 |
+
"rl_env": "BreakoutNoFrameskip-v4",
|
77 |
+
"video_link": "",
|
78 |
+
"global": null
|
79 |
+
},
|
80 |
+
{
|
81 |
+
"rl_env_beautiful": "QbertNoFrameskip-v4 π¦",
|
82 |
+
"rl_env": "QbertNoFrameskip-v4",
|
83 |
+
"video_link": "",
|
84 |
+
"global": null
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"rl_env_beautiful": "BipedalWalker-v3",
|
88 |
+
"rl_env": "BipedalWalker-v3",
|
89 |
+
"video_link": "",
|
90 |
+
"global": null
|
91 |
+
},
|
92 |
+
{
|
93 |
+
"rl_env_beautiful": "Walker2DBulletEnv-v0",
|
94 |
+
"rl_env": "Walker2DBulletEnv-v0",
|
95 |
+
"video_link": "",
|
96 |
+
"global": null
|
97 |
+
},
|
98 |
+
{
|
99 |
+
"rl_env_beautiful": "AntBulletEnv-v0",
|
100 |
+
"rl_env": "AntBulletEnv-v0",
|
101 |
+
"video_link": "",
|
102 |
+
"global": null
|
103 |
+
},
|
104 |
+
{
|
105 |
+
"rl_env_beautiful": "HalfCheetahBulletEnv-v0",
|
106 |
+
"rl_env": "HalfCheetahBulletEnv-v0",
|
107 |
+
"video_link": "",
|
108 |
+
"global": null
|
109 |
+
},
|
110 |
+
{
|
111 |
+
"rl_env_beautiful": "PandaReachDense-v2",
|
112 |
+
"rl_env": "PandaReachDense-v2",
|
113 |
+
"video_link": "",
|
114 |
+
"global": null
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"rl_env_beautiful": "PandaReachDense-v3",
|
118 |
+
"rl_env": "PandaReachDense-v3",
|
119 |
+
"video_link": "",
|
120 |
+
"global": null
|
121 |
+
},
|
122 |
+
{
|
123 |
+
"rl_env_beautiful": "Pixelcopter-PLE-v0",
|
124 |
+
"rl_env": "Pixelcopter-PLE-v0",
|
125 |
+
"video_link": "",
|
126 |
+
"global": null
|
127 |
+
}
|
128 |
+
]
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
APScheduler==3.10.1
|
2 |
+
gradio==4.0
|
3 |
+
httpx==0.24.0
|
4 |
+
tqdm
|