import os import json import requests import pandas as pd from huggingface_hub import HfApi, hf_hub_download, snapshot_download from huggingface_hub.repocard import metadata_load from tqdm.contrib.concurrent import thread_map from apscheduler.schedulers.background import BackgroundScheduler from tqdm.contrib.concurrent import thread_map DATASET_REPO_URL = "https://huggingface.co/datasets/pkalkman/drlc-leaderboard-data" DATASET_REPO_ID = "pkalkman/drlc-leaderboard-data" HF_TOKEN = os.environ.get("HF_TOKEN") api = HfApi(token=HF_TOKEN) # Read the environments from the JSON file with open('envs.json', 'r') as f: rl_envs = json.load(f) def download_leaderboard_dataset(): # Download the dataset from the Hugging Face Hub path = snapshot_download(repo_id=DATASET_REPO_ID, repo_type="dataset") return path def get_metadata(model_id): try: readme_path = hf_hub_download(model_id, filename="README.md", etag_timeout=180) return metadata_load(readme_path) except requests.exceptions.HTTPError: # 404 README.md not found return None def parse_metrics_accuracy(meta): if "model-index" not in meta: return None result = meta["model-index"][0]["results"] metrics = result[0]["metrics"] accuracy = metrics[0]["value"] return accuracy # We keep the worst case episode def parse_rewards(accuracy): default_std = -1000 default_reward = -1000 if accuracy is not None: accuracy = str(accuracy) parsed = accuracy.split('+/-') if len(parsed) > 1: mean_reward = float(parsed[0].strip()) std_reward = float(parsed[1].strip()) elif len(parsed) == 1: # only mean reward mean_reward = float(parsed[0].strip()) std_reward = float(0) else: mean_reward = float(default_std) std_reward = float(default_reward) else: mean_reward = float(default_std) std_reward = float(default_reward) return mean_reward, std_reward def get_model_ids(rl_env): api = HfApi() models = api.list_models(filter=rl_env) model_ids = [x.modelId for x in models] return model_ids # Parralelized version def update_leaderboard_dataset_parallel(rl_env, path): # Get model ids associated with rl_env model_ids = get_model_ids(rl_env) def process_model(model_id): meta = get_metadata(model_id) # LOADED_MODEL_METADATA[model_id] = meta if meta is not None else '' if meta is None: return None user_id = model_id.split('/')[0] row = {} row["User"] = user_id row["Model"] = model_id accuracy = parse_metrics_accuracy(meta) mean_reward, std_reward = parse_rewards(accuracy) mean_reward = mean_reward if not pd.isna(mean_reward) else 0 std_reward = std_reward if not pd.isna(std_reward) else 0 row["Results"] = mean_reward - std_reward row["Mean Reward"] = mean_reward row["Std Reward"] = std_reward return row data = list(thread_map(process_model, model_ids, desc="Processing models")) # Filter out None results (models with no metadata) data = [row for row in data if row is not None] ranked_dataframe = rank_dataframe(pd.DataFrame.from_records(data)) new_history = ranked_dataframe file_path = path + "/" + rl_env + ".csv" new_history.to_csv(file_path, index=False) return ranked_dataframe def update_leaderboard_dataset(rl_env, path): # Get model ids associated with rl_env model_ids = get_model_ids(rl_env) data = [] for model_id in model_ids: """ readme_path = hf_hub_download(model_id, filename="README.md") meta = metadata_load(readme_path) """ meta = get_metadata(model_id) # LOADED_MODEL_METADATA[model_id] = meta if meta is not None else '' if meta is None: continue user_id = model_id.split('/')[0] row = {} row["User"] = user_id row["Model"] = model_id accuracy = parse_metrics_accuracy(meta) mean_reward, std_reward = parse_rewards(accuracy) mean_reward = mean_reward if not pd.isna(mean_reward) else 0 std_reward = std_reward if not pd.isna(std_reward) else 0 row["Results"] = mean_reward - std_reward row["Mean Reward"] = mean_reward row["Std Reward"] = std_reward data.append(row) ranked_dataframe = rank_dataframe(pd.DataFrame.from_records(data)) new_history = ranked_dataframe file_path = path + "/" + rl_env + ".csv" new_history.to_csv(file_path, index=False) return ranked_dataframe def get_data_no_html(rl_env, path) -> pd.DataFrame: """ Get data from rl_env :return: data as a pandas DataFrame """ csv_path = path + "/" + rl_env + ".csv" data = pd.read_csv(csv_path) return data def rank_dataframe(dataframe): dataframe = dataframe.sort_values(by=['Results', 'User', 'Model'], ascending=False) if 'Ranking' not in dataframe.columns: dataframe.insert(0, 'Ranking', [i for i in range(1, len(dataframe) + 1)]) else: dataframe['Ranking'] = [i for i in range(1, len(dataframe) + 1)] return dataframe def run_update_dataset(): path_ = download_leaderboard_dataset() for i in range(0, len(rl_envs)): rl_env = rl_envs[i] update_leaderboard_dataset_parallel(rl_env["rl_env"], path_) api.upload_folder( folder_path=path_, repo_id="pkalkman/drlc-leaderboard-data", repo_type="dataset", commit_message="Update dataset") scheduler = BackgroundScheduler() scheduler.add_job(run_update_dataset, 'interval', seconds=10800) scheduler.start()