Spaces:
Build error
Build error
File size: 11,102 Bytes
7d861ad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 |
# DATA MANIPULATION & ANALYSIS
import pickle
import streamlit as st
# Arrays
import numpy as np
# DataFrames and Series
import pandas as pd
# Returns the indices of the maximum values along an axis
from numpy import argmax
# MODELLING
# Logistic regression
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import StratifiedKFold
# XGBoosted Decision Trees
import xgboost as xgb
# REPORTING, EVALUATION, AND INTERPRETATION
# Classification report
from sklearn.metrics import classification_report
# Reciever Operator Curve
from sklearn.metrics import roc_curve
# Evaluate a score by cross-validation
from sklearn.model_selection import cross_val_score
# # Functions
def drop_columns(df, columns):
return df.drop(columns, axis=1)
def remove_less_than_0_columns(df, column):
df[column].dropna()
return df.loc[(df[column] != 0).any(1)]
def boolean_int_condition_label(df, label_column_name, condition):
df[label_column_name] = condition
y = df[label_column_name].astype(int)
df = drop_columns(df, label_column_name)
return y, df
@st.cache(suppress_st_warning=True)
def undersample_training_data(
df: pd.DataFrame, column_name: str, split_dataset
):
count_nondefault, count_default = split_dataset.X_y_train[
column_name
].value_counts()
nondefaults = df[df[column_name] == 0] # 0
defaults = df[df[column_name] == 1]
under_sample = min(count_nondefault, count_default)
nondefaults_under = nondefaults.sample(under_sample)
defaults_under = defaults.sample(under_sample)
X_y_train_under = pd.concat(
[
nondefaults_under.reset_index(drop=True),
defaults_under.reset_index(drop=True),
],
axis=0,
)
X_train_under = X_y_train_under.drop([column_name], axis=1) # remove label
y_train_under = X_y_train_under[column_name] # label only
class_balance_default = X_y_train_under[column_name].value_counts()
return [
X_train_under,
y_train_under,
X_y_train_under,
class_balance_default,
]
def create_coeffient_feature_dictionary_logistic_model(
logistic_model, training_data
):
return {
feat: coef
for coef, feat in zip(
logistic_model.coef_[0, :], training_data.columns
)
}
@st.cache(suppress_st_warning=True)
def test_variables_logistic(X_train, y_train):
# Create and fit the logistic regression model
return LogisticRegression(solver="lbfgs").fit(X_train, np.ravel(y_train))
@st.cache(suppress_st_warning=True)
def print_coeff_logistic(clf_logistic_model, split_dataset):
# Dictionary of features and their coefficients
return create_coeffient_feature_dictionary_logistic_model(
clf_logistic_model, split_dataset.X_train
)
@st.cache(suppress_st_warning=True, hash_funcs={
xgb.XGBClassifier: pickle.dumps
})
def test_variables_gbt(X_train, y_train):
# Using hyperparameters learning_rate and max_depth
return xgb.XGBClassifier(
learning_rate=0.1,
max_depth=7,
use_label_encoder=False,
eval_metric="logloss",
).fit(X_train, np.ravel(y_train), eval_metric="logloss")
# In[398]:
def get_df_trueStatus_probabilityDefault_threshStatus_loanAmount(
model, X, y, threshold, loan_amount_col_name
):
true_status = y.to_frame()
loan_amount = X[loan_amount_col_name]
clf_prediction_prob = model.predict_proba(np.ascontiguousarray(X))
clf_prediction_prob_df = pd.DataFrame(
clf_prediction_prob[:, 1], columns=["PROB_DEFAULT"]
)
clf_thresh_predicted_default_status = (
clf_prediction_prob_df["PROB_DEFAULT"]
.apply(lambda x: 1 if x > threshold else 0)
.rename("PREDICT_DEFAULT_STATUS")
)
return pd.concat(
[
true_status.reset_index(drop=True),
clf_prediction_prob_df.reset_index(drop=True),
clf_thresh_predicted_default_status.reset_index(drop=True),
loan_amount.reset_index(drop=True),
],
axis=1,
)
def find_best_threshold_J_statistic(y, clf_prediction_prob_df):
fpr, tpr, thresholds = roc_curve(y, clf_prediction_prob_df)
# get the best threshold
# Youden’s J statistic tpr-fpr
# Argmax to get the index in
# thresholds
return thresholds[argmax(tpr - fpr)]
# In[399]:
# Function that makes dataframe with probability of default, predicted default status based on threshold
# and actual default status
def model_probability_values_df(model, X):
return pd.DataFrame(model.predict_proba(X)[:, 1], columns=["PROB_DEFAULT"])
def apply_threshold_to_probability_values(probability_values, threshold):
return (
probability_values["PROB_DEFAULT"]
.apply(lambda x: 1 if x > threshold else 0)
.rename("PREDICT_DEFAULT_STATUS")
)
@st.cache(suppress_st_warning=True)
def find_best_threshold_J_statistic(y, clf_prediction_prob_df):
fpr, tpr, thresholds = roc_curve(y, clf_prediction_prob_df)
# get the best threshold
J = tpr - fpr # Youden’s J statistic
ix = argmax(J)
return thresholds[ix]
# In[401]:
def create_cross_validation_df(
X, y, eval_metric, seed, trees, n_folds, early_stopping_rounds
):
# Test data x and y
DTrain = xgb.DMatrix(X, label=y)
# auc or logloss
params = {
"eval_metric": eval_metric,
"objective": "binary:logistic", # logistic say 0 or 1 for loan status
"seed": seed,
}
# Create the data frame of cross validations
cv_df = xgb.cv(
params,
DTrain,
num_boost_round=trees,
nfold=n_folds,
early_stopping_rounds=early_stopping_rounds,
shuffle=True,
)
return [DTrain, cv_df]
# In[450]:
def cross_validation_scores(model, X, y, nfold, score, seed):
# return cv scores of metric
return cross_val_score(
model,
np.ascontiguousarray(X),
np.ravel(np.ascontiguousarray(y)),
cv=StratifiedKFold(n_splits=nfold, shuffle=True, random_state=seed),
scoring=score,
)
def default_status_per_threshold(threshold_list, prob_default):
threshold_default_status_list = []
for threshold in threshold_list:
threshold_default_status = prob_default.apply(
lambda x: 1 if x > threshold else 0
)
threshold_default_status_list.append(threshold_default_status)
return threshold_default_status_list
def classification_report_per_threshold(
threshold_list, threshold_default_status_list, y_test
):
target_names = ["Non-Default", "Default"]
classification_report_list = []
for threshold_default_status in threshold_default_status_list:
thresh_classification_report = classification_report(
y_test,
threshold_default_status,
target_names=target_names,
output_dict=True,
zero_division=0,
)
classification_report_list.append(thresh_classification_report)
# Return threshold classification report dict
return dict(zip(threshold_list, classification_report_list))
def thresh_classification_report_recall_accuracy(
thresh_classification_report_dict,
):
thresh_def_recalls_list = []
thresh_nondef_recalls_list = []
thresh_accs_list = []
for x in [*thresh_classification_report_dict]:
thresh_def_recall = thresh_classification_report_dict[x]["Default"][
"recall"
]
thresh_def_recalls_list.append(thresh_def_recall)
thresh_nondef_recall = thresh_classification_report_dict[x][
"Non-Default"
]["recall"]
thresh_nondef_recalls_list.append(thresh_nondef_recall)
thresh_accs = thresh_classification_report_dict[x]["accuracy"]
thresh_accs_list.append(thresh_accs)
return [
thresh_def_recalls_list,
thresh_nondef_recalls_list,
thresh_accs_list,
]
def create_accept_rate_list(start, end, samples):
return np.linspace(start, end, samples, endpoint=True)
def create_strategyTable_df(
start, end, samples, actual_probability_predicted_acc_rate, true, currency
):
accept_rates = create_accept_rate_list(start, end, samples)
thresholds_strat = []
bad_rates_start = []
Avg_Loan_Amnt = actual_probability_predicted_acc_rate[true].mean()
num_accepted_loans_start = []
for rate in accept_rates:
# Calculate the threshold for the acceptance rate
thresh = np.quantile(
actual_probability_predicted_acc_rate["PROB_DEFAULT"], rate
).round(3)
# Add the threshold value to the list of thresholds
thresholds_strat.append(
np.quantile(
actual_probability_predicted_acc_rate["PROB_DEFAULT"], rate
).round(3)
)
# Reassign the loan_status value using the threshold
actual_probability_predicted_acc_rate[
"PREDICT_DEFAULT_STATUS"
] = actual_probability_predicted_acc_rate["PROB_DEFAULT"].apply(
lambda x: 1 if x > thresh else 0
)
# Create a set of accepted loans using this acceptance rate
accepted_loans = actual_probability_predicted_acc_rate[
actual_probability_predicted_acc_rate["PREDICT_DEFAULT_STATUS"]
== 0
]
# Calculate and append the bad rate using the acceptance rate
bad_rates_start.append(
np.sum((accepted_loans[true]) / len(accepted_loans[true])).round(3)
)
# Accepted loans
num_accepted_loans_start.append(len(accepted_loans))
# Calculate estimated value
money_accepted_loans = [
accepted_loans * Avg_Loan_Amnt
for accepted_loans in num_accepted_loans_start
]
money_bad_accepted_loans = [
2 * money_accepted_loan * bad_rate
for money_accepted_loan, bad_rate in zip(
money_accepted_loans, bad_rates_start
)
]
zip_object = zip(money_accepted_loans, money_bad_accepted_loans)
estimated_value = [
money_accepted_loan - money_bad_accepted_loan
for money_accepted_loan, money_bad_accepted_loan in zip_object
]
accept_rates = ["{:.2f}".format(elem) for elem in accept_rates]
thresholds_strat = ["{:.2f}".format(elem) for elem in thresholds_strat]
bad_rates_start = ["{:.2f}".format(elem) for elem in bad_rates_start]
estimated_value = ["{:.2f}".format(elem) for elem in estimated_value]
return (
pd.DataFrame(
zip(
accept_rates,
thresholds_strat,
bad_rates_start,
num_accepted_loans_start,
estimated_value,
),
columns=[
"Acceptance Rate",
"Threshold",
"Bad Rate",
"Num Accepted Loans",
f"Estimated Value ({currency})",
],
)
.sort_values(by="Acceptance Rate", axis=0, ascending=False)
.reset_index(drop=True)
)
|