Spaces:
Running
Running
File size: 10,717 Bytes
0c87db7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 |
"""
Modified version from codeformer-pip project
S-Lab License 1.0
Copyright 2022 S-Lab
https://github.com/kadirnar/codeformer-pip/blob/main/LICENSE
"""
import os
import cv2
import torch
from codeformer.facelib.detection import init_detection_model
from codeformer.facelib.parsing import init_parsing_model
from torchvision.transforms.functional import normalize
from codeformer.basicsr.archs.rrdbnet_arch import RRDBNet
from codeformer.basicsr.utils import img2tensor, imwrite, tensor2img
from codeformer.basicsr.utils.download_util import load_file_from_url
from codeformer.basicsr.utils.realesrgan_utils import RealESRGANer
from codeformer.basicsr.utils.registry import ARCH_REGISTRY
from codeformer.facelib.utils.face_restoration_helper import FaceRestoreHelper
from codeformer.facelib.utils.misc import is_gray
import threading
from plugins.codeformer_face_helper_cv2 import FaceRestoreHelperOptimized
THREAD_LOCK_FACE_HELPER = threading.Lock()
THREAD_LOCK_FACE_HELPER_CREATE = threading.Lock()
THREAD_LOCK_FACE_HELPER_PROCERSSING = threading.Lock()
THREAD_LOCK_CODEFORMER_NET = threading.Lock()
THREAD_LOCK_CODEFORMER_NET_CREATE = threading.Lock()
THREAD_LOCK_BGUPSAMPLER = threading.Lock()
pretrain_model_url = {
"codeformer": "https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth",
"detection": "https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/detection_Resnet50_Final.pth",
"parsing": "https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/parsing_parsenet.pth",
"realesrgan": "https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/RealESRGAN_x2plus.pth",
}
# download weights
if not os.path.exists("models/CodeFormer/codeformer.pth"):
load_file_from_url(
url=pretrain_model_url["codeformer"], model_dir="models/CodeFormer/", progress=True, file_name=None
)
if not os.path.exists("models/CodeFormer/facelib/detection_Resnet50_Final.pth"):
load_file_from_url(
url=pretrain_model_url["detection"], model_dir="models/CodeFormer/facelib", progress=True, file_name=None
)
if not os.path.exists("models/CodeFormer/facelib/parsing_parsenet.pth"):
load_file_from_url(
url=pretrain_model_url["parsing"], model_dir="models/CodeFormer/facelib", progress=True, file_name=None
)
if not os.path.exists("models/CodeFormer/realesrgan/RealESRGAN_x2plus.pth"):
load_file_from_url(
url=pretrain_model_url["realesrgan"], model_dir="models/CodeFormer/realesrgan", progress=True, file_name=None
)
def imread(img_path):
img = cv2.imread(img_path)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
return img
# set enhancer with RealESRGAN
def set_realesrgan():
half = True if torch.cuda.is_available() else False
model = RRDBNet(
num_in_ch=3,
num_out_ch=3,
num_feat=64,
num_block=23,
num_grow_ch=32,
scale=2,
)
upsampler = RealESRGANer(
scale=2,
model_path="models/CodeFormer/realesrgan/RealESRGAN_x2plus.pth",
model=model,
tile=400,
tile_pad=40,
pre_pad=0,
half=half,
)
return upsampler
upsampler = set_realesrgan()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
codeformers_cache = []
def get_codeformer():
if len(codeformers_cache) > 0:
with THREAD_LOCK_CODEFORMER_NET:
if len(codeformers_cache) > 0:
return codeformers_cache.pop()
with THREAD_LOCK_CODEFORMER_NET_CREATE:
codeformer_net = ARCH_REGISTRY.get("CodeFormer")(
dim_embd=512,
codebook_size=1024,
n_head=8,
n_layers=9,
connect_list=["32", "64", "128", "256"],
).to(device)
ckpt_path = "models/CodeFormer/codeformer.pth"
checkpoint = torch.load(ckpt_path)["params_ema"]
codeformer_net.load_state_dict(checkpoint)
codeformer_net.eval()
return codeformer_net
def release_codeformer(codeformer):
with THREAD_LOCK_CODEFORMER_NET:
codeformers_cache.append(codeformer)
#os.makedirs("output", exist_ok=True)
# ------- face restore thread cache ----------
face_restore_helper_cache = []
detection_model = "retinaface_resnet50"
inited_face_restore_helper_nn = False
import time
def get_face_restore_helper(upscale):
global inited_face_restore_helper_nn
with THREAD_LOCK_FACE_HELPER:
face_helper = FaceRestoreHelperOptimized(
upscale,
face_size=512,
crop_ratio=(1, 1),
det_model=detection_model,
save_ext="png",
use_parse=True,
device=device,
)
#return face_helper
if inited_face_restore_helper_nn:
while len(face_restore_helper_cache) == 0:
time.sleep(0.05)
face_detector, face_parse = face_restore_helper_cache.pop()
face_helper.face_detector = face_detector
face_helper.face_parse = face_parse
return face_helper
else:
inited_face_restore_helper_nn = True
face_helper.face_detector = init_detection_model(detection_model, half=False, device=face_helper.device)
face_helper.face_parse = init_parsing_model(model_name="parsenet", device=face_helper.device)
return face_helper
def get_face_restore_helper2(upscale): # still not work well!!!
face_helper = FaceRestoreHelperOptimized(
upscale,
face_size=512,
crop_ratio=(1, 1),
det_model=detection_model,
save_ext="png",
use_parse=True,
device=device,
)
#return face_helper
if len(face_restore_helper_cache) > 0:
with THREAD_LOCK_FACE_HELPER:
if len(face_restore_helper_cache) > 0:
face_detector, face_parse = face_restore_helper_cache.pop()
face_helper.face_detector = face_detector
face_helper.face_parse = face_parse
return face_helper
with THREAD_LOCK_FACE_HELPER_CREATE:
face_helper.face_detector = init_detection_model(detection_model, half=False, device=face_helper.device)
face_helper.face_parse = init_parsing_model(model_name="parsenet", device=face_helper.device)
return face_helper
def release_face_restore_helper(face_helper):
#return
#with THREAD_LOCK_FACE_HELPER:
face_restore_helper_cache.append((face_helper.face_detector, face_helper.face_parse))
#pass
def inference_app(image, background_enhance, face_upsample, upscale, codeformer_fidelity, skip_if_no_face = False):
# take the default setting for the demo
has_aligned = False
only_center_face = False
draw_box = False
#print("Inp:", image, background_enhance, face_upsample, upscale, codeformer_fidelity)
if isinstance(image, str):
img = cv2.imread(str(image), cv2.IMREAD_COLOR)
else:
img = image
#print("\timage size:", img.shape)
upscale = int(upscale) # convert type to int
if upscale > 4: # avoid memory exceeded due to too large upscale
upscale = 4
if upscale > 2 and max(img.shape[:2]) > 1000: # avoid memory exceeded due to too large img resolution
upscale = 2
if max(img.shape[:2]) > 1500: # avoid memory exceeded due to too large img resolution
upscale = 1
background_enhance = False
#face_upsample = False
face_helper = get_face_restore_helper(upscale)
bg_upsampler = upsampler if background_enhance else None
face_upsampler = upsampler if face_upsample else None
if has_aligned:
# the input faces are already cropped and aligned
img = cv2.resize(img, (512, 512), interpolation=cv2.INTER_LINEAR)
face_helper.is_gray = is_gray(img, threshold=5)
if face_helper.is_gray:
print("\tgrayscale input: True")
face_helper.cropped_faces = [img]
else:
with THREAD_LOCK_FACE_HELPER_PROCERSSING:
face_helper.read_image(img)
# get face landmarks for each face
num_det_faces = face_helper.get_face_landmarks_5(
only_center_face=only_center_face, resize=640, eye_dist_threshold=5
)
#print(f"\tdetect {num_det_faces} faces")
if num_det_faces == 0 and skip_if_no_face:
release_face_restore_helper(face_helper)
return img
# align and warp each face
face_helper.align_warp_face()
# face restoration for each cropped face
for idx, cropped_face in enumerate(face_helper.cropped_faces):
# prepare data
cropped_face_t = img2tensor(cropped_face / 255.0, bgr2rgb=True, float32=True)
normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)
cropped_face_t = cropped_face_t.unsqueeze(0).to(device)
codeformer_net = get_codeformer()
try:
with torch.no_grad():
output = codeformer_net(cropped_face_t, w=codeformer_fidelity, adain=True)[0]
restored_face = tensor2img(output, rgb2bgr=True, min_max=(-1, 1))
del output
except RuntimeError as error:
print(f"Failed inference for CodeFormer: {error}")
restored_face = tensor2img(cropped_face_t, rgb2bgr=True, min_max=(-1, 1))
release_codeformer(codeformer_net)
restored_face = restored_face.astype("uint8")
face_helper.add_restored_face(restored_face)
# paste_back
if not has_aligned:
# upsample the background
if bg_upsampler is not None:
with THREAD_LOCK_BGUPSAMPLER:
# Now only support RealESRGAN for upsampling background
bg_img = bg_upsampler.enhance(img, outscale=upscale)[0]
else:
bg_img = None
face_helper.get_inverse_affine(None)
# paste each restored face to the input image
if face_upsample and face_upsampler is not None:
restored_img = face_helper.paste_faces_to_input_image(
upsample_img=bg_img,
draw_box=draw_box,
face_upsampler=face_upsampler,
)
else:
restored_img = face_helper.paste_faces_to_input_image(upsample_img=bg_img, draw_box=draw_box)
if image.shape != restored_img.shape:
h, w, _ = image.shape
restored_img = cv2.resize(restored_img, (w, h), interpolation=cv2.INTER_LINEAR)
release_face_restore_helper(face_helper)
# save restored img
if isinstance(image, str):
save_path = f"output/out.png"
imwrite(restored_img, str(save_path))
return save_path
else:
return restored_img
|