import threading from typing import Any import insightface import roop.globals from roop.typing import Frame import cv2 from PIL import Image from roop.capturer import get_video_frame FACE_ANALYSER = None THREAD_LOCK = threading.Lock() def get_face_analyser() -> Any: global FACE_ANALYSER with THREAD_LOCK: if FACE_ANALYSER is None: FACE_ANALYSER = insightface.app.FaceAnalysis(name='buffalo_l', providers=roop.globals.execution_providers) FACE_ANALYSER.prepare(ctx_id=0, det_size=(640, 640)) return FACE_ANALYSER def get_first_face(frame: Frame) -> Any: faces = get_face_analyser().get(frame) try: return min(faces, key=lambda x: x.bbox[0]) # return sorted(faces, reverse=True, key=lambda x: (x.bbox[2] - x.bbox[0]) * (x.bbox[3] - x.bbox[1]))[0] except ValueError: return None def get_all_faces(frame: Frame) -> Any: try: faces = get_face_analyser().get(frame) return sorted(faces, key = lambda x : x.bbox[0]) except IndexError: return None def extract_face_images(source_filename, video_info): face_data = [] source_image = None if video_info[0]: frame = get_video_frame(source_filename, video_info[1]) if frame is not None: source_image = frame else: return face_data else: source_image = cv2.imread(source_filename) faces = get_all_faces(source_image) i = 0 for face in faces: (startX, startY, endX, endY) = face['bbox'].astype("int") face_temp = source_image[startY:endY, startX:endX] if face_temp.size < 1: continue i += 1 face_data.append([face, face_temp]) return face_data