pknez commited on
Commit
3362754
·
1 Parent(s): 2680f29

Upload folder using huggingface_hub

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .flake8 +3 -0
  2. .gitattributes +2 -0
  3. .github/ISSUE_TEMPLATE/bug_report.md +39 -0
  4. .github/ISSUE_TEMPLATE/suggestion.md +11 -0
  5. .github/examples/snapshot.mp4 +3 -0
  6. .github/examples/source.jpg +0 -0
  7. .github/examples/target.mp4 +0 -0
  8. .github/workflows/ci.yml +33 -0
  9. .gitignore +12 -0
  10. Dockerfile +7 -0
  11. LICENSE +661 -0
  12. README.md +4 -8
  13. __pycache__/jaa.cpython-311.pyc +0 -0
  14. __pycache__/settings.cpython-311.pyc +0 -0
  15. chain_img_processor/__init__.py +4 -0
  16. chain_img_processor/__pycache__/__init__.cpython-311.pyc +0 -0
  17. chain_img_processor/__pycache__/batchimage.cpython-311.pyc +0 -0
  18. chain_img_processor/__pycache__/ffmpeg_writer.cpython-311.pyc +0 -0
  19. chain_img_processor/__pycache__/image.cpython-311.pyc +0 -0
  20. chain_img_processor/__pycache__/video.cpython-311.pyc +0 -0
  21. chain_img_processor/batchimage.py +86 -0
  22. chain_img_processor/ffmpeg_writer.py +253 -0
  23. chain_img_processor/image.py +176 -0
  24. chain_img_processor/video.py +132 -0
  25. clip/__init__.py +1 -0
  26. clip/bpe_simple_vocab_16e6.txt.gz +3 -0
  27. clip/clip.py +245 -0
  28. clip/clipseg.py +538 -0
  29. clip/model.py +436 -0
  30. clip/simple_tokenizer.py +132 -0
  31. clip/vitseg.py +286 -0
  32. docs/faceselection.png +0 -0
  33. docs/finaloutput.png +3 -0
  34. docs/kickboxing.jpg +0 -0
  35. docs/musk.jpg +0 -0
  36. docs/screenshot.png +0 -0
  37. installer/installer.py +83 -0
  38. installer/windows_run.bat +80 -0
  39. jaa.py +355 -0
  40. models/CLIP/rd64-uni-refined.pth +3 -0
  41. models/CodeFormer/codeformer.pth +3 -0
  42. models/CodeFormer/facelib/detection_Resnet50_Final.pth +3 -0
  43. models/CodeFormer/facelib/parsing_parsenet.pth +3 -0
  44. models/CodeFormer/realesrgan/RealESRGAN_x2plus.pth +3 -0
  45. models/DMDNet.pth +3 -0
  46. models/GFPGANv1.4.pth +3 -0
  47. models/inswapper_128.onnx +3 -0
  48. mynewshinyroop/.gitignore +2 -0
  49. mynewshinyroop/Lib/site-packages/_distutils_hack/__init__.py +227 -0
  50. mynewshinyroop/Lib/site-packages/_distutils_hack/override.py +1 -0
.flake8 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ [flake8]
2
+ select = E3, E4, F
3
+ per-file-ignores = roop/core.py:E402
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ .github/examples/snapshot.mp4 filter=lfs diff=lfs merge=lfs -text
37
+ docs/finaloutput.png filter=lfs diff=lfs merge=lfs -text
.github/ISSUE_TEMPLATE/bug_report.md ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ name: Bug report
3
+ about: Create a report to help us improve
4
+ title: ''
5
+ labels: ''
6
+ assignees: ''
7
+
8
+ ---
9
+
10
+ **Describe the bug**
11
+ A clear and concise description of what the bug is.
12
+
13
+ **To Reproduce**
14
+ Steps to reproduce the behavior:
15
+ 1. Go to '...'
16
+ 2. Click on '....'
17
+ 3. Scroll down to '....'
18
+ 4. See error
19
+
20
+ **Details**
21
+ What OS are you using?
22
+ - [ ] Linux
23
+ - [ ] Linux in WSL
24
+ - [ ] Windows
25
+ - [ ] Mac
26
+
27
+ Are you try to use a GPU?
28
+ - [ ] No. I am not using the `---gpu` flag
29
+ - [ ] NVIDIA
30
+ - [ ] AMD
31
+ - [ ] Intel
32
+ - [ ] Mac
33
+
34
+ **Screenshots**
35
+ If applicable, add screenshots to help explain your problem.
36
+
37
+ **Sanity Check**
38
+ - [ ] I have the latest code from the github repository
39
+ - [ ] I have followed the installation guide
.github/ISSUE_TEMPLATE/suggestion.md ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ name: Suggestion
3
+ about: Suggest an idea for this project
4
+ title: ''
5
+ labels: ''
6
+ assignees: ''
7
+
8
+ ---
9
+
10
+ **Describe your suggestion**
11
+ A clear and concise description of what you want to happen.
.github/examples/snapshot.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6021bee403a32b33b9d0b12916fcc40fee520681910a3faaef4b1f7e66ee386e
3
+ size 2435482
.github/examples/source.jpg ADDED
.github/examples/target.mp4 ADDED
Binary file (377 kB). View file
 
.github/workflows/ci.yml ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: ci
2
+
3
+ on: [ push, pull_request ]
4
+
5
+ jobs:
6
+ lint:
7
+ runs-on: ubuntu-latest
8
+ steps:
9
+ - name: Checkout
10
+ uses: actions/checkout@v2
11
+ - name: Set up Python 3.9
12
+ uses: actions/setup-python@v2
13
+ with:
14
+ python-version: 3.9
15
+ - run: pip install flake8
16
+ - run: pip install mypy
17
+ - run: flake8 run.py roop
18
+ - run: mypy run.py roop
19
+ test:
20
+ runs-on: ubuntu-latest
21
+ steps:
22
+ - name: Checkout
23
+ uses: actions/checkout@v2
24
+ - name: Set up ffmpeg
25
+ uses: FedericoCarboni/setup-ffmpeg@v2
26
+ - name: Set up Python 3.9
27
+ uses: actions/setup-python@v2
28
+ with:
29
+ python-version: 3.9
30
+ - run: pip install -r requirements-ci.txt
31
+ - run: python run.py -s=.github/examples/source.jpg -t=.github/examples/target.mp4 -o=.github/examples/output.mp4
32
+ - run: ffmpeg -i .github/examples/snapshot.mp4 -i .github/examples/output.mp4 -filter_complex psnr -f null -
33
+
.gitignore ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ .vs
2
+ .idea
3
+ models
4
+ temp
5
+ __pycache__
6
+ *.pth
7
+ /start.bat
8
+ /env
9
+ .vscode
10
+ output
11
+ temp
12
+ config.yaml
Dockerfile ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ FROM python:3.11
2
+ WORKDIR /usr/src/app
3
+ RUN apt-get update && apt-get install -y libgl1-mesa-glx
4
+ COPY requirements.txt ./
5
+ RUN pip install --no-cache-dir -r requirements.txt
6
+ COPY . .
7
+ CMD ["python", "run.py"]
LICENSE ADDED
@@ -0,0 +1,661 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ GNU AFFERO GENERAL PUBLIC LICENSE
2
+ Version 3, 19 November 2007
3
+
4
+ Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
5
+ Everyone is permitted to copy and distribute verbatim copies
6
+ of this license document, but changing it is not allowed.
7
+
8
+ Preamble
9
+
10
+ The GNU Affero General Public License is a free, copyleft license for
11
+ software and other kinds of works, specifically designed to ensure
12
+ cooperation with the community in the case of network server software.
13
+
14
+ The licenses for most software and other practical works are designed
15
+ to take away your freedom to share and change the works. By contrast,
16
+ our General Public Licenses are intended to guarantee your freedom to
17
+ share and change all versions of a program--to make sure it remains free
18
+ software for all its users.
19
+
20
+ When we speak of free software, we are referring to freedom, not
21
+ price. Our General Public Licenses are designed to make sure that you
22
+ have the freedom to distribute copies of free software (and charge for
23
+ them if you wish), that you receive source code or can get it if you
24
+ want it, that you can change the software or use pieces of it in new
25
+ free programs, and that you know you can do these things.
26
+
27
+ Developers that use our General Public Licenses protect your rights
28
+ with two steps: (1) assert copyright on the software, and (2) offer
29
+ you this License which gives you legal permission to copy, distribute
30
+ and/or modify the software.
31
+
32
+ A secondary benefit of defending all users' freedom is that
33
+ improvements made in alternate versions of the program, if they
34
+ receive widespread use, become available for other developers to
35
+ incorporate. Many developers of free software are heartened and
36
+ encouraged by the resulting cooperation. However, in the case of
37
+ software used on network servers, this result may fail to come about.
38
+ The GNU General Public License permits making a modified version and
39
+ letting the public access it on a server without ever releasing its
40
+ source code to the public.
41
+
42
+ The GNU Affero General Public License is designed specifically to
43
+ ensure that, in such cases, the modified source code becomes available
44
+ to the community. It requires the operator of a network server to
45
+ provide the source code of the modified version running there to the
46
+ users of that server. Therefore, public use of a modified version, on
47
+ a publicly accessible server, gives the public access to the source
48
+ code of the modified version.
49
+
50
+ An older license, called the Affero General Public License and
51
+ published by Affero, was designed to accomplish similar goals. This is
52
+ a different license, not a version of the Affero GPL, but Affero has
53
+ released a new version of the Affero GPL which permits relicensing under
54
+ this license.
55
+
56
+ The precise terms and conditions for copying, distribution and
57
+ modification follow.
58
+
59
+ TERMS AND CONDITIONS
60
+
61
+ 0. Definitions.
62
+
63
+ "This License" refers to version 3 of the GNU Affero General Public License.
64
+
65
+ "Copyright" also means copyright-like laws that apply to other kinds of
66
+ works, such as semiconductor masks.
67
+
68
+ "The Program" refers to any copyrightable work licensed under this
69
+ License. Each licensee is addressed as "you". "Licensees" and
70
+ "recipients" may be individuals or organizations.
71
+
72
+ To "modify" a work means to copy from or adapt all or part of the work
73
+ in a fashion requiring copyright permission, other than the making of an
74
+ exact copy. The resulting work is called a "modified version" of the
75
+ earlier work or a work "based on" the earlier work.
76
+
77
+ A "covered work" means either the unmodified Program or a work based
78
+ on the Program.
79
+
80
+ To "propagate" a work means to do anything with it that, without
81
+ permission, would make you directly or secondarily liable for
82
+ infringement under applicable copyright law, except executing it on a
83
+ computer or modifying a private copy. Propagation includes copying,
84
+ distribution (with or without modification), making available to the
85
+ public, and in some countries other activities as well.
86
+
87
+ To "convey" a work means any kind of propagation that enables other
88
+ parties to make or receive copies. Mere interaction with a user through
89
+ a computer network, with no transfer of a copy, is not conveying.
90
+
91
+ An interactive user interface displays "Appropriate Legal Notices"
92
+ to the extent that it includes a convenient and prominently visible
93
+ feature that (1) displays an appropriate copyright notice, and (2)
94
+ tells the user that there is no warranty for the work (except to the
95
+ extent that warranties are provided), that licensees may convey the
96
+ work under this License, and how to view a copy of this License. If
97
+ the interface presents a list of user commands or options, such as a
98
+ menu, a prominent item in the list meets this criterion.
99
+
100
+ 1. Source Code.
101
+
102
+ The "source code" for a work means the preferred form of the work
103
+ for making modifications to it. "Object code" means any non-source
104
+ form of a work.
105
+
106
+ A "Standard Interface" means an interface that either is an official
107
+ standard defined by a recognized standards body, or, in the case of
108
+ interfaces specified for a particular programming language, one that
109
+ is widely used among developers working in that language.
110
+
111
+ The "System Libraries" of an executable work include anything, other
112
+ than the work as a whole, that (a) is included in the normal form of
113
+ packaging a Major Component, but which is not part of that Major
114
+ Component, and (b) serves only to enable use of the work with that
115
+ Major Component, or to implement a Standard Interface for which an
116
+ implementation is available to the public in source code form. A
117
+ "Major Component", in this context, means a major essential component
118
+ (kernel, window system, and so on) of the specific operating system
119
+ (if any) on which the executable work runs, or a compiler used to
120
+ produce the work, or an object code interpreter used to run it.
121
+
122
+ The "Corresponding Source" for a work in object code form means all
123
+ the source code needed to generate, install, and (for an executable
124
+ work) run the object code and to modify the work, including scripts to
125
+ control those activities. However, it does not include the work's
126
+ System Libraries, or general-purpose tools or generally available free
127
+ programs which are used unmodified in performing those activities but
128
+ which are not part of the work. For example, Corresponding Source
129
+ includes interface definition files associated with source files for
130
+ the work, and the source code for shared libraries and dynamically
131
+ linked subprograms that the work is specifically designed to require,
132
+ such as by intimate data communication or control flow between those
133
+ subprograms and other parts of the work.
134
+
135
+ The Corresponding Source need not include anything that users
136
+ can regenerate automatically from other parts of the Corresponding
137
+ Source.
138
+
139
+ The Corresponding Source for a work in source code form is that
140
+ same work.
141
+
142
+ 2. Basic Permissions.
143
+
144
+ All rights granted under this License are granted for the term of
145
+ copyright on the Program, and are irrevocable provided the stated
146
+ conditions are met. This License explicitly affirms your unlimited
147
+ permission to run the unmodified Program. The output from running a
148
+ covered work is covered by this License only if the output, given its
149
+ content, constitutes a covered work. This License acknowledges your
150
+ rights of fair use or other equivalent, as provided by copyright law.
151
+
152
+ You may make, run and propagate covered works that you do not
153
+ convey, without conditions so long as your license otherwise remains
154
+ in force. You may convey covered works to others for the sole purpose
155
+ of having them make modifications exclusively for you, or provide you
156
+ with facilities for running those works, provided that you comply with
157
+ the terms of this License in conveying all material for which you do
158
+ not control copyright. Those thus making or running the covered works
159
+ for you must do so exclusively on your behalf, under your direction
160
+ and control, on terms that prohibit them from making any copies of
161
+ your copyrighted material outside their relationship with you.
162
+
163
+ Conveying under any other circumstances is permitted solely under
164
+ the conditions stated below. Sublicensing is not allowed; section 10
165
+ makes it unnecessary.
166
+
167
+ 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
168
+
169
+ No covered work shall be deemed part of an effective technological
170
+ measure under any applicable law fulfilling obligations under article
171
+ 11 of the WIPO copyright treaty adopted on 20 December 1996, or
172
+ similar laws prohibiting or restricting circumvention of such
173
+ measures.
174
+
175
+ When you convey a covered work, you waive any legal power to forbid
176
+ circumvention of technological measures to the extent such circumvention
177
+ is effected by exercising rights under this License with respect to
178
+ the covered work, and you disclaim any intention to limit operation or
179
+ modification of the work as a means of enforcing, against the work's
180
+ users, your or third parties' legal rights to forbid circumvention of
181
+ technological measures.
182
+
183
+ 4. Conveying Verbatim Copies.
184
+
185
+ You may convey verbatim copies of the Program's source code as you
186
+ receive it, in any medium, provided that you conspicuously and
187
+ appropriately publish on each copy an appropriate copyright notice;
188
+ keep intact all notices stating that this License and any
189
+ non-permissive terms added in accord with section 7 apply to the code;
190
+ keep intact all notices of the absence of any warranty; and give all
191
+ recipients a copy of this License along with the Program.
192
+
193
+ You may charge any price or no price for each copy that you convey,
194
+ and you may offer support or warranty protection for a fee.
195
+
196
+ 5. Conveying Modified Source Versions.
197
+
198
+ You may convey a work based on the Program, or the modifications to
199
+ produce it from the Program, in the form of source code under the
200
+ terms of section 4, provided that you also meet all of these conditions:
201
+
202
+ a) The work must carry prominent notices stating that you modified
203
+ it, and giving a relevant date.
204
+
205
+ b) The work must carry prominent notices stating that it is
206
+ released under this License and any conditions added under section
207
+ 7. This requirement modifies the requirement in section 4 to
208
+ "keep intact all notices".
209
+
210
+ c) You must license the entire work, as a whole, under this
211
+ License to anyone who comes into possession of a copy. This
212
+ License will therefore apply, along with any applicable section 7
213
+ additional terms, to the whole of the work, and all its parts,
214
+ regardless of how they are packaged. This License gives no
215
+ permission to license the work in any other way, but it does not
216
+ invalidate such permission if you have separately received it.
217
+
218
+ d) If the work has interactive user interfaces, each must display
219
+ Appropriate Legal Notices; however, if the Program has interactive
220
+ interfaces that do not display Appropriate Legal Notices, your
221
+ work need not make them do so.
222
+
223
+ A compilation of a covered work with other separate and independent
224
+ works, which are not by their nature extensions of the covered work,
225
+ and which are not combined with it such as to form a larger program,
226
+ in or on a volume of a storage or distribution medium, is called an
227
+ "aggregate" if the compilation and its resulting copyright are not
228
+ used to limit the access or legal rights of the compilation's users
229
+ beyond what the individual works permit. Inclusion of a covered work
230
+ in an aggregate does not cause this License to apply to the other
231
+ parts of the aggregate.
232
+
233
+ 6. Conveying Non-Source Forms.
234
+
235
+ You may convey a covered work in object code form under the terms
236
+ of sections 4 and 5, provided that you also convey the
237
+ machine-readable Corresponding Source under the terms of this License,
238
+ in one of these ways:
239
+
240
+ a) Convey the object code in, or embodied in, a physical product
241
+ (including a physical distribution medium), accompanied by the
242
+ Corresponding Source fixed on a durable physical medium
243
+ customarily used for software interchange.
244
+
245
+ b) Convey the object code in, or embodied in, a physical product
246
+ (including a physical distribution medium), accompanied by a
247
+ written offer, valid for at least three years and valid for as
248
+ long as you offer spare parts or customer support for that product
249
+ model, to give anyone who possesses the object code either (1) a
250
+ copy of the Corresponding Source for all the software in the
251
+ product that is covered by this License, on a durable physical
252
+ medium customarily used for software interchange, for a price no
253
+ more than your reasonable cost of physically performing this
254
+ conveying of source, or (2) access to copy the
255
+ Corresponding Source from a network server at no charge.
256
+
257
+ c) Convey individual copies of the object code with a copy of the
258
+ written offer to provide the Corresponding Source. This
259
+ alternative is allowed only occasionally and noncommercially, and
260
+ only if you received the object code with such an offer, in accord
261
+ with subsection 6b.
262
+
263
+ d) Convey the object code by offering access from a designated
264
+ place (gratis or for a charge), and offer equivalent access to the
265
+ Corresponding Source in the same way through the same place at no
266
+ further charge. You need not require recipients to copy the
267
+ Corresponding Source along with the object code. If the place to
268
+ copy the object code is a network server, the Corresponding Source
269
+ may be on a different server (operated by you or a third party)
270
+ that supports equivalent copying facilities, provided you maintain
271
+ clear directions next to the object code saying where to find the
272
+ Corresponding Source. Regardless of what server hosts the
273
+ Corresponding Source, you remain obligated to ensure that it is
274
+ available for as long as needed to satisfy these requirements.
275
+
276
+ e) Convey the object code using peer-to-peer transmission, provided
277
+ you inform other peers where the object code and Corresponding
278
+ Source of the work are being offered to the general public at no
279
+ charge under subsection 6d.
280
+
281
+ A separable portion of the object code, whose source code is excluded
282
+ from the Corresponding Source as a System Library, need not be
283
+ included in conveying the object code work.
284
+
285
+ A "User Product" is either (1) a "consumer product", which means any
286
+ tangible personal property which is normally used for personal, family,
287
+ or household purposes, or (2) anything designed or sold for incorporation
288
+ into a dwelling. In determining whether a product is a consumer product,
289
+ doubtful cases shall be resolved in favor of coverage. For a particular
290
+ product received by a particular user, "normally used" refers to a
291
+ typical or common use of that class of product, regardless of the status
292
+ of the particular user or of the way in which the particular user
293
+ actually uses, or expects or is expected to use, the product. A product
294
+ is a consumer product regardless of whether the product has substantial
295
+ commercial, industrial or non-consumer uses, unless such uses represent
296
+ the only significant mode of use of the product.
297
+
298
+ "Installation Information" for a User Product means any methods,
299
+ procedures, authorization keys, or other information required to install
300
+ and execute modified versions of a covered work in that User Product from
301
+ a modified version of its Corresponding Source. The information must
302
+ suffice to ensure that the continued functioning of the modified object
303
+ code is in no case prevented or interfered with solely because
304
+ modification has been made.
305
+
306
+ If you convey an object code work under this section in, or with, or
307
+ specifically for use in, a User Product, and the conveying occurs as
308
+ part of a transaction in which the right of possession and use of the
309
+ User Product is transferred to the recipient in perpetuity or for a
310
+ fixed term (regardless of how the transaction is characterized), the
311
+ Corresponding Source conveyed under this section must be accompanied
312
+ by the Installation Information. But this requirement does not apply
313
+ if neither you nor any third party retains the ability to install
314
+ modified object code on the User Product (for example, the work has
315
+ been installed in ROM).
316
+
317
+ The requirement to provide Installation Information does not include a
318
+ requirement to continue to provide support service, warranty, or updates
319
+ for a work that has been modified or installed by the recipient, or for
320
+ the User Product in which it has been modified or installed. Access to a
321
+ network may be denied when the modification itself materially and
322
+ adversely affects the operation of the network or violates the rules and
323
+ protocols for communication across the network.
324
+
325
+ Corresponding Source conveyed, and Installation Information provided,
326
+ in accord with this section must be in a format that is publicly
327
+ documented (and with an implementation available to the public in
328
+ source code form), and must require no special password or key for
329
+ unpacking, reading or copying.
330
+
331
+ 7. Additional Terms.
332
+
333
+ "Additional permissions" are terms that supplement the terms of this
334
+ License by making exceptions from one or more of its conditions.
335
+ Additional permissions that are applicable to the entire Program shall
336
+ be treated as though they were included in this License, to the extent
337
+ that they are valid under applicable law. If additional permissions
338
+ apply only to part of the Program, that part may be used separately
339
+ under those permissions, but the entire Program remains governed by
340
+ this License without regard to the additional permissions.
341
+
342
+ When you convey a copy of a covered work, you may at your option
343
+ remove any additional permissions from that copy, or from any part of
344
+ it. (Additional permissions may be written to require their own
345
+ removal in certain cases when you modify the work.) You may place
346
+ additional permissions on material, added by you to a covered work,
347
+ for which you have or can give appropriate copyright permission.
348
+
349
+ Notwithstanding any other provision of this License, for material you
350
+ add to a covered work, you may (if authorized by the copyright holders of
351
+ that material) supplement the terms of this License with terms:
352
+
353
+ a) Disclaiming warranty or limiting liability differently from the
354
+ terms of sections 15 and 16 of this License; or
355
+
356
+ b) Requiring preservation of specified reasonable legal notices or
357
+ author attributions in that material or in the Appropriate Legal
358
+ Notices displayed by works containing it; or
359
+
360
+ c) Prohibiting misrepresentation of the origin of that material, or
361
+ requiring that modified versions of such material be marked in
362
+ reasonable ways as different from the original version; or
363
+
364
+ d) Limiting the use for publicity purposes of names of licensors or
365
+ authors of the material; or
366
+
367
+ e) Declining to grant rights under trademark law for use of some
368
+ trade names, trademarks, or service marks; or
369
+
370
+ f) Requiring indemnification of licensors and authors of that
371
+ material by anyone who conveys the material (or modified versions of
372
+ it) with contractual assumptions of liability to the recipient, for
373
+ any liability that these contractual assumptions directly impose on
374
+ those licensors and authors.
375
+
376
+ All other non-permissive additional terms are considered "further
377
+ restrictions" within the meaning of section 10. If the Program as you
378
+ received it, or any part of it, contains a notice stating that it is
379
+ governed by this License along with a term that is a further
380
+ restriction, you may remove that term. If a license document contains
381
+ a further restriction but permits relicensing or conveying under this
382
+ License, you may add to a covered work material governed by the terms
383
+ of that license document, provided that the further restriction does
384
+ not survive such relicensing or conveying.
385
+
386
+ If you add terms to a covered work in accord with this section, you
387
+ must place, in the relevant source files, a statement of the
388
+ additional terms that apply to those files, or a notice indicating
389
+ where to find the applicable terms.
390
+
391
+ Additional terms, permissive or non-permissive, may be stated in the
392
+ form of a separately written license, or stated as exceptions;
393
+ the above requirements apply either way.
394
+
395
+ 8. Termination.
396
+
397
+ You may not propagate or modify a covered work except as expressly
398
+ provided under this License. Any attempt otherwise to propagate or
399
+ modify it is void, and will automatically terminate your rights under
400
+ this License (including any patent licenses granted under the third
401
+ paragraph of section 11).
402
+
403
+ However, if you cease all violation of this License, then your
404
+ license from a particular copyright holder is reinstated (a)
405
+ provisionally, unless and until the copyright holder explicitly and
406
+ finally terminates your license, and (b) permanently, if the copyright
407
+ holder fails to notify you of the violation by some reasonable means
408
+ prior to 60 days after the cessation.
409
+
410
+ Moreover, your license from a particular copyright holder is
411
+ reinstated permanently if the copyright holder notifies you of the
412
+ violation by some reasonable means, this is the first time you have
413
+ received notice of violation of this License (for any work) from that
414
+ copyright holder, and you cure the violation prior to 30 days after
415
+ your receipt of the notice.
416
+
417
+ Termination of your rights under this section does not terminate the
418
+ licenses of parties who have received copies or rights from you under
419
+ this License. If your rights have been terminated and not permanently
420
+ reinstated, you do not qualify to receive new licenses for the same
421
+ material under section 10.
422
+
423
+ 9. Acceptance Not Required for Having Copies.
424
+
425
+ You are not required to accept this License in order to receive or
426
+ run a copy of the Program. Ancillary propagation of a covered work
427
+ occurring solely as a consequence of using peer-to-peer transmission
428
+ to receive a copy likewise does not require acceptance. However,
429
+ nothing other than this License grants you permission to propagate or
430
+ modify any covered work. These actions infringe copyright if you do
431
+ not accept this License. Therefore, by modifying or propagating a
432
+ covered work, you indicate your acceptance of this License to do so.
433
+
434
+ 10. Automatic Licensing of Downstream Recipients.
435
+
436
+ Each time you convey a covered work, the recipient automatically
437
+ receives a license from the original licensors, to run, modify and
438
+ propagate that work, subject to this License. You are not responsible
439
+ for enforcing compliance by third parties with this License.
440
+
441
+ An "entity transaction" is a transaction transferring control of an
442
+ organization, or substantially all assets of one, or subdividing an
443
+ organization, or merging organizations. If propagation of a covered
444
+ work results from an entity transaction, each party to that
445
+ transaction who receives a copy of the work also receives whatever
446
+ licenses to the work the party's predecessor in interest had or could
447
+ give under the previous paragraph, plus a right to possession of the
448
+ Corresponding Source of the work from the predecessor in interest, if
449
+ the predecessor has it or can get it with reasonable efforts.
450
+
451
+ You may not impose any further restrictions on the exercise of the
452
+ rights granted or affirmed under this License. For example, you may
453
+ not impose a license fee, royalty, or other charge for exercise of
454
+ rights granted under this License, and you may not initiate litigation
455
+ (including a cross-claim or counterclaim in a lawsuit) alleging that
456
+ any patent claim is infringed by making, using, selling, offering for
457
+ sale, or importing the Program or any portion of it.
458
+
459
+ 11. Patents.
460
+
461
+ A "contributor" is a copyright holder who authorizes use under this
462
+ License of the Program or a work on which the Program is based. The
463
+ work thus licensed is called the contributor's "contributor version".
464
+
465
+ A contributor's "essential patent claims" are all patent claims
466
+ owned or controlled by the contributor, whether already acquired or
467
+ hereafter acquired, that would be infringed by some manner, permitted
468
+ by this License, of making, using, or selling its contributor version,
469
+ but do not include claims that would be infringed only as a
470
+ consequence of further modification of the contributor version. For
471
+ purposes of this definition, "control" includes the right to grant
472
+ patent sublicenses in a manner consistent with the requirements of
473
+ this License.
474
+
475
+ Each contributor grants you a non-exclusive, worldwide, royalty-free
476
+ patent license under the contributor's essential patent claims, to
477
+ make, use, sell, offer for sale, import and otherwise run, modify and
478
+ propagate the contents of its contributor version.
479
+
480
+ In the following three paragraphs, a "patent license" is any express
481
+ agreement or commitment, however denominated, not to enforce a patent
482
+ (such as an express permission to practice a patent or covenant not to
483
+ sue for patent infringement). To "grant" such a patent license to a
484
+ party means to make such an agreement or commitment not to enforce a
485
+ patent against the party.
486
+
487
+ If you convey a covered work, knowingly relying on a patent license,
488
+ and the Corresponding Source of the work is not available for anyone
489
+ to copy, free of charge and under the terms of this License, through a
490
+ publicly available network server or other readily accessible means,
491
+ then you must either (1) cause the Corresponding Source to be so
492
+ available, or (2) arrange to deprive yourself of the benefit of the
493
+ patent license for this particular work, or (3) arrange, in a manner
494
+ consistent with the requirements of this License, to extend the patent
495
+ license to downstream recipients. "Knowingly relying" means you have
496
+ actual knowledge that, but for the patent license, your conveying the
497
+ covered work in a country, or your recipient's use of the covered work
498
+ in a country, would infringe one or more identifiable patents in that
499
+ country that you have reason to believe are valid.
500
+
501
+ If, pursuant to or in connection with a single transaction or
502
+ arrangement, you convey, or propagate by procuring conveyance of, a
503
+ covered work, and grant a patent license to some of the parties
504
+ receiving the covered work authorizing them to use, propagate, modify
505
+ or convey a specific copy of the covered work, then the patent license
506
+ you grant is automatically extended to all recipients of the covered
507
+ work and works based on it.
508
+
509
+ A patent license is "discriminatory" if it does not include within
510
+ the scope of its coverage, prohibits the exercise of, or is
511
+ conditioned on the non-exercise of one or more of the rights that are
512
+ specifically granted under this License. You may not convey a covered
513
+ work if you are a party to an arrangement with a third party that is
514
+ in the business of distributing software, under which you make payment
515
+ to the third party based on the extent of your activity of conveying
516
+ the work, and under which the third party grants, to any of the
517
+ parties who would receive the covered work from you, a discriminatory
518
+ patent license (a) in connection with copies of the covered work
519
+ conveyed by you (or copies made from those copies), or (b) primarily
520
+ for and in connection with specific products or compilations that
521
+ contain the covered work, unless you entered into that arrangement,
522
+ or that patent license was granted, prior to 28 March 2007.
523
+
524
+ Nothing in this License shall be construed as excluding or limiting
525
+ any implied license or other defenses to infringement that may
526
+ otherwise be available to you under applicable patent law.
527
+
528
+ 12. No Surrender of Others' Freedom.
529
+
530
+ If conditions are imposed on you (whether by court order, agreement or
531
+ otherwise) that contradict the conditions of this License, they do not
532
+ excuse you from the conditions of this License. If you cannot convey a
533
+ covered work so as to satisfy simultaneously your obligations under this
534
+ License and any other pertinent obligations, then as a consequence you may
535
+ not convey it at all. For example, if you agree to terms that obligate you
536
+ to collect a royalty for further conveying from those to whom you convey
537
+ the Program, the only way you could satisfy both those terms and this
538
+ License would be to refrain entirely from conveying the Program.
539
+
540
+ 13. Remote Network Interaction; Use with the GNU General Public License.
541
+
542
+ Notwithstanding any other provision of this License, if you modify the
543
+ Program, your modified version must prominently offer all users
544
+ interacting with it remotely through a computer network (if your version
545
+ supports such interaction) an opportunity to receive the Corresponding
546
+ Source of your version by providing access to the Corresponding Source
547
+ from a network server at no charge, through some standard or customary
548
+ means of facilitating copying of software. This Corresponding Source
549
+ shall include the Corresponding Source for any work covered by version 3
550
+ of the GNU General Public License that is incorporated pursuant to the
551
+ following paragraph.
552
+
553
+ Notwithstanding any other provision of this License, you have
554
+ permission to link or combine any covered work with a work licensed
555
+ under version 3 of the GNU General Public License into a single
556
+ combined work, and to convey the resulting work. The terms of this
557
+ License will continue to apply to the part which is the covered work,
558
+ but the work with which it is combined will remain governed by version
559
+ 3 of the GNU General Public License.
560
+
561
+ 14. Revised Versions of this License.
562
+
563
+ The Free Software Foundation may publish revised and/or new versions of
564
+ the GNU Affero General Public License from time to time. Such new versions
565
+ will be similar in spirit to the present version, but may differ in detail to
566
+ address new problems or concerns.
567
+
568
+ Each version is given a distinguishing version number. If the
569
+ Program specifies that a certain numbered version of the GNU Affero General
570
+ Public License "or any later version" applies to it, you have the
571
+ option of following the terms and conditions either of that numbered
572
+ version or of any later version published by the Free Software
573
+ Foundation. If the Program does not specify a version number of the
574
+ GNU Affero General Public License, you may choose any version ever published
575
+ by the Free Software Foundation.
576
+
577
+ If the Program specifies that a proxy can decide which future
578
+ versions of the GNU Affero General Public License can be used, that proxy's
579
+ public statement of acceptance of a version permanently authorizes you
580
+ to choose that version for the Program.
581
+
582
+ Later license versions may give you additional or different
583
+ permissions. However, no additional obligations are imposed on any
584
+ author or copyright holder as a result of your choosing to follow a
585
+ later version.
586
+
587
+ 15. Disclaimer of Warranty.
588
+
589
+ THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
590
+ APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
591
+ HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
592
+ OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
593
+ THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
594
+ PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
595
+ IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
596
+ ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
597
+
598
+ 16. Limitation of Liability.
599
+
600
+ IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
601
+ WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
602
+ THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
603
+ GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
604
+ USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
605
+ DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
606
+ PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
607
+ EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
608
+ SUCH DAMAGES.
609
+
610
+ 17. Interpretation of Sections 15 and 16.
611
+
612
+ If the disclaimer of warranty and limitation of liability provided
613
+ above cannot be given local legal effect according to their terms,
614
+ reviewing courts shall apply local law that most closely approximates
615
+ an absolute waiver of all civil liability in connection with the
616
+ Program, unless a warranty or assumption of liability accompanies a
617
+ copy of the Program in return for a fee.
618
+
619
+ END OF TERMS AND CONDITIONS
620
+
621
+ How to Apply These Terms to Your New Programs
622
+
623
+ If you develop a new program, and you want it to be of the greatest
624
+ possible use to the public, the best way to achieve this is to make it
625
+ free software which everyone can redistribute and change under these terms.
626
+
627
+ To do so, attach the following notices to the program. It is safest
628
+ to attach them to the start of each source file to most effectively
629
+ state the exclusion of warranty; and each file should have at least
630
+ the "copyright" line and a pointer to where the full notice is found.
631
+
632
+ <one line to give the program's name and a brief idea of what it does.>
633
+ Copyright (C) <year> <name of author>
634
+
635
+ This program is free software: you can redistribute it and/or modify
636
+ it under the terms of the GNU Affero General Public License as published
637
+ by the Free Software Foundation, either version 3 of the License, or
638
+ (at your option) any later version.
639
+
640
+ This program is distributed in the hope that it will be useful,
641
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
642
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
643
+ GNU Affero General Public License for more details.
644
+
645
+ You should have received a copy of the GNU Affero General Public License
646
+ along with this program. If not, see <https://www.gnu.org/licenses/>.
647
+
648
+ Also add information on how to contact you by electronic and paper mail.
649
+
650
+ If your software can interact with users remotely through a computer
651
+ network, you should also make sure that it provides a way for users to
652
+ get its source. For example, if your program is a web application, its
653
+ interface could display a "Source" link that leads users to an archive
654
+ of the code. There are many ways you could offer source, and different
655
+ solutions will be better for different programs; see section 13 for the
656
+ specific requirements.
657
+
658
+ You should also get your employer (if you work as a programmer) or school,
659
+ if any, to sign a "copyright disclaimer" for the program, if necessary.
660
+ For more information on this, and how to apply and follow the GNU AGPL, see
661
+ <https://www.gnu.org/licenses/>.
README.md CHANGED
@@ -1,13 +1,9 @@
1
  ---
2
- title: Face Swap
3
- emoji: 👁
4
- colorFrom: red
5
- colorTo: blue
6
  sdk: gradio
7
  sdk_version: 3.40.1
8
- app_file: app.py
9
- pinned: false
10
- license: gpl-3.0
11
  ---
 
12
 
13
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
1
  ---
2
+ title: face-swap
3
+ app_file: run.py
 
 
4
  sdk: gradio
5
  sdk_version: 3.40.1
 
 
 
6
  ---
7
+ # roop-unleashed
8
 
9
+ WIP Version of roop-unleashed using Gradio UI
__pycache__/jaa.cpython-311.pyc ADDED
Binary file (17.8 kB). View file
 
__pycache__/settings.cpython-311.pyc ADDED
Binary file (3.43 kB). View file
 
chain_img_processor/__init__.py ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ from .image import ChainImgProcessor, ChainImgPlugin, get_single_image_processor, version
2
+ from .video import ChainVideoProcessor, get_single_video_processor
3
+ from .batchimage import ChainBatchImageProcessor
4
+ from .ffmpeg_writer import FFMPEG_VideoWriter
chain_img_processor/__pycache__/__init__.cpython-311.pyc ADDED
Binary file (584 Bytes). View file
 
chain_img_processor/__pycache__/batchimage.cpython-311.pyc ADDED
Binary file (6.46 kB). View file
 
chain_img_processor/__pycache__/ffmpeg_writer.cpython-311.pyc ADDED
Binary file (9.41 kB). View file
 
chain_img_processor/__pycache__/image.cpython-311.pyc ADDED
Binary file (9.19 kB). View file
 
chain_img_processor/__pycache__/video.cpython-311.pyc ADDED
Binary file (6.57 kB). View file
 
chain_img_processor/batchimage.py ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Any, List, Callable
2
+ import psutil
3
+ import os
4
+ from concurrent.futures import ThreadPoolExecutor, as_completed
5
+ from queue import Queue
6
+ from .image import ChainImgProcessor
7
+ from tqdm import tqdm
8
+ import cv2
9
+
10
+ def create_queue(temp_frame_paths: List[str]) -> Queue[str]:
11
+ queue: Queue[str] = Queue()
12
+ for frame_path in temp_frame_paths:
13
+ queue.put(frame_path)
14
+ return queue
15
+
16
+
17
+ def pick_queue(queue: Queue[str], queue_per_future: int) -> List[str]:
18
+ queues = []
19
+ for _ in range(queue_per_future):
20
+ if not queue.empty():
21
+ queues.append(queue.get())
22
+ return queues
23
+
24
+
25
+
26
+ class ChainBatchImageProcessor(ChainImgProcessor):
27
+ chain = None
28
+ func_params_gen = None
29
+ num_threads = 1
30
+
31
+ def __init__(self):
32
+ ChainImgProcessor.__init__(self)
33
+
34
+
35
+ def init_with_plugins(self):
36
+ self.init_plugins(["core"])
37
+ self.display_init_info()
38
+
39
+ init_on_start_arr = self.init_on_start.split(",")
40
+ for proc_id in init_on_start_arr:
41
+ self.init_processor(proc_id)
42
+
43
+ def update_progress(self, progress: Any = None) -> None:
44
+ process = psutil.Process(os.getpid())
45
+ memory_usage = process.memory_info().rss / 1024 / 1024 / 1024
46
+ progress.set_postfix({
47
+ 'memory_usage': '{:.2f}'.format(memory_usage).zfill(5) + 'GB',
48
+ 'execution_threads': self.num_threads
49
+ })
50
+ progress.refresh()
51
+ progress.update(1)
52
+
53
+
54
+ def process_frames(self, source_files: List[str], target_files: List[str], current_files, update: Callable[[], None]) -> None:
55
+ for f in current_files:
56
+ temp_frame = cv2.imread(f)
57
+ if temp_frame is not None:
58
+ if self.func_params_gen:
59
+ params = self.func_params_gen(None, temp_frame)
60
+ else:
61
+ params = {}
62
+ resimg, _ = self.run_chain(temp_frame, params, self.chain)
63
+ if resimg is not None:
64
+ i = source_files.index(f)
65
+ cv2.imwrite(target_files[i], resimg)
66
+ if update:
67
+ update()
68
+
69
+
70
+ def run_batch_chain(self, source_files, target_files, threads:int = 1, chain = None, params_frame_gen_func = None):
71
+ self.chain = chain
72
+ self.func_params_gen = params_frame_gen_func
73
+ progress_bar_format = '{l_bar}{bar}| {n_fmt}/{total_fmt} [{elapsed}<{remaining}, {rate_fmt}{postfix}]'
74
+ total = len(source_files)
75
+ self.num_threads = threads
76
+ with tqdm(total=total, desc='Processing', unit='frame', dynamic_ncols=True, bar_format=progress_bar_format) as progress:
77
+ with ThreadPoolExecutor(max_workers=threads) as executor:
78
+ futures = []
79
+ queue = create_queue(source_files)
80
+ queue_per_future = max(len(source_files) // threads, 1)
81
+ while not queue.empty():
82
+ future = executor.submit(self.process_frames, source_files, target_files, pick_queue(queue, queue_per_future), lambda: self.update_progress(progress))
83
+ futures.append(future)
84
+ for future in as_completed(futures):
85
+ future.result()
86
+
chain_img_processor/ffmpeg_writer.py ADDED
@@ -0,0 +1,253 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ FFMPEG_Writer - write set of frames to video file
3
+
4
+ original from
5
+ https://github.com/Zulko/moviepy/blob/master/moviepy/video/io/ffmpeg_writer.py
6
+
7
+ removed unnecessary dependencies
8
+
9
+ The MIT License (MIT)
10
+
11
+ Copyright (c) 2015 Zulko
12
+ Copyright (c) 2023 Janvarev Vladislav
13
+ """
14
+
15
+ import os
16
+ import subprocess as sp
17
+
18
+ PIPE = -1
19
+ STDOUT = -2
20
+ DEVNULL = -3
21
+
22
+ FFMPEG_BINARY = "ffmpeg"
23
+
24
+ class FFMPEG_VideoWriter:
25
+ """ A class for FFMPEG-based video writing.
26
+
27
+ A class to write videos using ffmpeg. ffmpeg will write in a large
28
+ choice of formats.
29
+
30
+ Parameters
31
+ -----------
32
+
33
+ filename
34
+ Any filename like 'video.mp4' etc. but if you want to avoid
35
+ complications it is recommended to use the generic extension
36
+ '.avi' for all your videos.
37
+
38
+ size
39
+ Size (width,height) of the output video in pixels.
40
+
41
+ fps
42
+ Frames per second in the output video file.
43
+
44
+ codec
45
+ FFMPEG codec. It seems that in terms of quality the hierarchy is
46
+ 'rawvideo' = 'png' > 'mpeg4' > 'libx264'
47
+ 'png' manages the same lossless quality as 'rawvideo' but yields
48
+ smaller files. Type ``ffmpeg -codecs`` in a terminal to get a list
49
+ of accepted codecs.
50
+
51
+ Note for default 'libx264': by default the pixel format yuv420p
52
+ is used. If the video dimensions are not both even (e.g. 720x405)
53
+ another pixel format is used, and this can cause problem in some
54
+ video readers.
55
+
56
+ audiofile
57
+ Optional: The name of an audio file that will be incorporated
58
+ to the video.
59
+
60
+ preset
61
+ Sets the time that FFMPEG will take to compress the video. The slower,
62
+ the better the compression rate. Possibilities are: ultrafast,superfast,
63
+ veryfast, faster, fast, medium (default), slow, slower, veryslow,
64
+ placebo.
65
+
66
+ bitrate
67
+ Only relevant for codecs which accept a bitrate. "5000k" offers
68
+ nice results in general.
69
+
70
+ """
71
+
72
+ def __init__(self, filename, size, fps, codec="libx265", crf=14, audiofile=None,
73
+ preset="medium", bitrate=None,
74
+ logfile=None, threads=None, ffmpeg_params=None):
75
+
76
+ if logfile is None:
77
+ logfile = sp.PIPE
78
+
79
+ self.filename = filename
80
+ self.codec = codec
81
+ self.ext = self.filename.split(".")[-1]
82
+ w = size[0] - 1 if size[0] % 2 != 0 else size[0]
83
+ h = size[1] - 1 if size[1] % 2 != 0 else size[1]
84
+
85
+
86
+ # order is important
87
+ cmd = [
88
+ FFMPEG_BINARY,
89
+ '-hide_banner',
90
+ '-hwaccel', 'auto',
91
+ '-y',
92
+ '-loglevel', 'error' if logfile == sp.PIPE else 'info',
93
+ '-f', 'rawvideo',
94
+ '-vcodec', 'rawvideo',
95
+ '-s', '%dx%d' % (size[0], size[1]),
96
+ #'-pix_fmt', 'rgba' if withmask else 'rgb24',
97
+ '-pix_fmt', 'bgr24',
98
+ '-r', str(fps),
99
+ '-an', '-i', '-'
100
+ ]
101
+
102
+ if audiofile is not None:
103
+ cmd.extend([
104
+ '-i', audiofile,
105
+ '-acodec', 'copy'
106
+ ])
107
+
108
+ cmd.extend([
109
+ '-vcodec', codec,
110
+ '-crf', str(crf)
111
+ #'-preset', preset,
112
+ ])
113
+ if ffmpeg_params is not None:
114
+ cmd.extend(ffmpeg_params)
115
+ if bitrate is not None:
116
+ cmd.extend([
117
+ '-b', bitrate
118
+ ])
119
+
120
+ # scale to a resolution divisible by 2 if not even
121
+ cmd.extend(['-vf', f'scale={w}:{h}' if w != size[0] or h != size[1] else 'colorspace=bt709:iall=bt601-6-625:fast=1'])
122
+
123
+ if threads is not None:
124
+ cmd.extend(["-threads", str(threads)])
125
+
126
+ cmd.extend([
127
+ '-pix_fmt', 'yuv420p',
128
+
129
+ ])
130
+ cmd.extend([
131
+ filename
132
+ ])
133
+
134
+ test = str(cmd)
135
+ print(test)
136
+
137
+ popen_params = {"stdout": DEVNULL,
138
+ "stderr": logfile,
139
+ "stdin": sp.PIPE}
140
+
141
+ # This was added so that no extra unwanted window opens on windows
142
+ # when the child process is created
143
+ if os.name == "nt":
144
+ popen_params["creationflags"] = 0x08000000 # CREATE_NO_WINDOW
145
+
146
+ self.proc = sp.Popen(cmd, **popen_params)
147
+
148
+
149
+ def write_frame(self, img_array):
150
+ """ Writes one frame in the file."""
151
+ try:
152
+ #if PY3:
153
+ self.proc.stdin.write(img_array.tobytes())
154
+ # else:
155
+ # self.proc.stdin.write(img_array.tostring())
156
+ except IOError as err:
157
+ _, ffmpeg_error = self.proc.communicate()
158
+ error = (str(err) + ("\n\nMoviePy error: FFMPEG encountered "
159
+ "the following error while writing file %s:"
160
+ "\n\n %s" % (self.filename, str(ffmpeg_error))))
161
+
162
+ if b"Unknown encoder" in ffmpeg_error:
163
+
164
+ error = error+("\n\nThe video export "
165
+ "failed because FFMPEG didn't find the specified "
166
+ "codec for video encoding (%s). Please install "
167
+ "this codec or change the codec when calling "
168
+ "write_videofile. For instance:\n"
169
+ " >>> clip.write_videofile('myvid.webm', codec='libvpx')")%(self.codec)
170
+
171
+ elif b"incorrect codec parameters ?" in ffmpeg_error:
172
+
173
+ error = error+("\n\nThe video export "
174
+ "failed, possibly because the codec specified for "
175
+ "the video (%s) is not compatible with the given "
176
+ "extension (%s). Please specify a valid 'codec' "
177
+ "argument in write_videofile. This would be 'libx264' "
178
+ "or 'mpeg4' for mp4, 'libtheora' for ogv, 'libvpx for webm. "
179
+ "Another possible reason is that the audio codec was not "
180
+ "compatible with the video codec. For instance the video "
181
+ "extensions 'ogv' and 'webm' only allow 'libvorbis' (default) as a"
182
+ "video codec."
183
+ )%(self.codec, self.ext)
184
+
185
+ elif b"encoder setup failed" in ffmpeg_error:
186
+
187
+ error = error+("\n\nThe video export "
188
+ "failed, possibly because the bitrate you specified "
189
+ "was too high or too low for the video codec.")
190
+
191
+ elif b"Invalid encoder type" in ffmpeg_error:
192
+
193
+ error = error + ("\n\nThe video export failed because the codec "
194
+ "or file extension you provided is not a video")
195
+
196
+
197
+ raise IOError(error)
198
+
199
+ def close(self):
200
+ if self.proc:
201
+ self.proc.stdin.close()
202
+ if self.proc.stderr is not None:
203
+ self.proc.stderr.close()
204
+ self.proc.wait()
205
+
206
+ self.proc = None
207
+
208
+ # Support the Context Manager protocol, to ensure that resources are cleaned up.
209
+
210
+ def __enter__(self):
211
+ return self
212
+
213
+ def __exit__(self, exc_type, exc_value, traceback):
214
+ self.close()
215
+
216
+
217
+
218
+ def ffmpeg_write_image(filename, image, logfile=False):
219
+ """ Writes an image (HxWx3 or HxWx4 numpy array) to a file, using
220
+ ffmpeg. """
221
+
222
+ if image.dtype != 'uint8':
223
+ image = image.astype("uint8")
224
+
225
+ cmd = [ FFMPEG_BINARY, '-y',
226
+ '-s', "%dx%d"%(image.shape[:2][::-1]),
227
+ "-f", 'rawvideo',
228
+ '-pix_fmt', "rgba" if (image.shape[2] == 4) else "rgb24",
229
+ '-i','-', filename]
230
+
231
+ if logfile:
232
+ log_file = open(filename + ".log", 'w+')
233
+ else:
234
+ log_file = sp.PIPE
235
+
236
+ popen_params = {"stdout": DEVNULL,
237
+ "stderr": log_file,
238
+ "stdin": sp.PIPE}
239
+
240
+ if os.name == "nt":
241
+ popen_params["creationflags"] = 0x08000000
242
+
243
+ proc = sp.Popen(cmd, **popen_params)
244
+ out, err = proc.communicate(image.tostring())
245
+
246
+ if proc.returncode:
247
+ err = "\n".join(["[MoviePy] Running : %s\n" % cmd,
248
+ "WARNING: this command returned an error:",
249
+ err.decode('utf8')])
250
+ raise IOError(err)
251
+
252
+ del proc
253
+
chain_img_processor/image.py ADDED
@@ -0,0 +1,176 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from jaa import JaaCore
2
+ from roop.utilities import get_device
3
+
4
+
5
+ from typing import Any
6
+
7
+ version = "4.0.0"
8
+
9
+ class ChainImgProcessor(JaaCore):
10
+
11
+ def __init__(self):
12
+ JaaCore.__init__(self)
13
+
14
+ self.processors:dict = {
15
+ }
16
+
17
+ self.processors_objects:dict[str,list[ChainImgPlugin]] = {}
18
+
19
+ self.default_chain = ""
20
+ self.init_on_start = ""
21
+
22
+ self.inited_processors = []
23
+
24
+ self.is_demo_row_render = False
25
+
26
+ def process_plugin_manifest(self, modname, manifest):
27
+ # adding processors from plugin manifest
28
+ if "img_processor" in manifest: # process commands
29
+ for cmd in manifest["img_processor"].keys():
30
+ self.processors[cmd] = manifest["img_processor"][cmd]
31
+
32
+ return manifest
33
+
34
+ def init_with_plugins(self):
35
+ self.init_plugins(["core"])
36
+ self.display_init_info()
37
+
38
+ #self.init_translator_engine(self.default_translator)
39
+ init_on_start_arr = self.init_on_start.split(",")
40
+ for proc_id in init_on_start_arr:
41
+ self.init_processor(proc_id)
42
+
43
+ def run_chain(self, img, params:dict[str,Any] = None, chain:str = None, thread_index:int = 0):
44
+ if chain is None:
45
+ chain = self.default_chain
46
+ if params is None:
47
+ params = {}
48
+ params["_thread_index"] = thread_index
49
+ chain_ar = chain.split(",")
50
+ # init all not inited processors first
51
+ for proc_id in chain_ar:
52
+ if proc_id != "":
53
+ if not proc_id in self.inited_processors:
54
+ self.init_processor(proc_id)
55
+
56
+
57
+
58
+ # run processing
59
+ if self.is_demo_row_render:
60
+ import cv2
61
+ import numpy as np
62
+ height, width, channels = img.shape
63
+ img_blank = np.zeros((height+30, width*(1+len(chain_ar)), 3), dtype=np.uint8)
64
+ img_blank.fill(255)
65
+
66
+ y = 30
67
+ x = 0
68
+ img_blank[y:y + height, x:x + width] = img
69
+
70
+ # Set the font scale and thickness
71
+ font_scale = 1
72
+ thickness = 2
73
+
74
+ # Set the font face to a monospace font
75
+ font_face = cv2.FONT_HERSHEY_SIMPLEX
76
+
77
+ cv2.putText(img_blank, "original", (x+4, y-7), font_face, font_scale, (0, 0, 0), thickness)
78
+
79
+
80
+ i = 0
81
+ for proc_id in chain_ar:
82
+ i += 1
83
+ if proc_id != "":
84
+ #img = self.processors[proc_id][1](self, img, params) # params can be modified inside
85
+ y = 30
86
+ img = self.processors_objects[proc_id][thread_index].process(img,params)
87
+ if self.is_demo_row_render:
88
+ x = width*i
89
+ img_blank[y:y + height, x:x + width] = img
90
+ cv2.putText(img_blank, proc_id, (x + 4, y - 7), font_face, font_scale, (0, 0, 0), thickness)
91
+
92
+ if self.is_demo_row_render:
93
+ return img_blank, params
94
+
95
+ return img, params
96
+
97
+ # ---------------- init translation stuff ----------------
98
+ def fill_processors_for_thread_chains(self, threads:int = 1, chain:str = None):
99
+ if chain is None:
100
+ chain = self.default_chain
101
+
102
+ chain_ar = chain.split(",")
103
+ # init all not initialized processors first
104
+ for processor_id in chain_ar:
105
+ if processor_id != "":
106
+ if self.processors_objects.get(processor_id) is None:
107
+ self.processors_objects[processor_id] = []
108
+ while len(self.processors_objects[processor_id]) < threads:
109
+ self.add_processor_to_list(processor_id)
110
+
111
+ def add_processor_to_list(self, processor_id: str):
112
+ obj = self.processors[processor_id](self)
113
+ obj.init_plugin()
114
+ if self.processors_objects.get(processor_id) is None:
115
+ self.processors_objects[processor_id] = []
116
+ self.processors_objects[processor_id].append(obj)
117
+ def init_processor(self, processor_id: str):
118
+ if processor_id == "": # blank line case
119
+ return
120
+
121
+ if processor_id in self.inited_processors:
122
+ return
123
+
124
+ try:
125
+ if self.verbose:
126
+ self.print_blue("TRY: init processor plugin '{0}'...".format(processor_id))
127
+ self.add_processor_to_list(processor_id)
128
+ self.inited_processors.append(processor_id)
129
+ if self.verbose:
130
+ self.print_blue("SUCCESS: '{0}' initialized!".format(processor_id))
131
+
132
+ except Exception as e:
133
+ self.print_error("Error init processor plugin {0}...".format(processor_id), e)
134
+
135
+ # ------------ formatting stuff -------------------
136
+ def display_init_info(self):
137
+ if self.verbose:
138
+ print("ChainImgProcessor v{0}:".format(version))
139
+ self.format_print_key_list("processors:", self.processors.keys())
140
+
141
+ def format_print_key_list(self, key:str, value:list):
142
+ print(key+": ".join(value))
143
+
144
+ def print_error(self,err_txt,e:Exception = None):
145
+ print(err_txt,"red")
146
+ # if e != None:
147
+ # cprint(e,"red")
148
+ import traceback
149
+ traceback.print_exc()
150
+
151
+ def print_red(self,txt):
152
+ print(txt)
153
+
154
+ def print_blue(self, txt):
155
+ print(txt)
156
+
157
+ class ChainImgPlugin:
158
+
159
+ device = 'cpu'
160
+
161
+ def __init__(self, core: ChainImgProcessor):
162
+ self.core = core
163
+ self.device = get_device()
164
+
165
+ def init_plugin(self): # here you can init something. Called once
166
+ pass
167
+ def process(self, img, params:dict): # process img. Called multiple
168
+ return img
169
+
170
+ _img_processor:ChainImgProcessor = None
171
+ def get_single_image_processor() -> ChainImgProcessor:
172
+ global _img_processor
173
+ if _img_processor is None:
174
+ _img_processor = ChainImgProcessor()
175
+ _img_processor.init_with_plugins()
176
+ return _img_processor
chain_img_processor/video.py ADDED
@@ -0,0 +1,132 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import roop.globals
2
+
3
+ from threading import Thread
4
+ from chain_img_processor import ChainImgProcessor
5
+
6
+ class ThreadWithReturnValue(Thread):
7
+
8
+ def __init__(self, group=None, target=None, name=None,
9
+ args=(), kwargs={}, Verbose=None):
10
+ Thread.__init__(self, group, target, name, args, kwargs)
11
+ self._return = None
12
+
13
+ def run(self):
14
+ if self._target is not None:
15
+ self._return = self._target(*self._args,
16
+ **self._kwargs)
17
+
18
+ def join(self, *args):
19
+ Thread.join(self, *args)
20
+ return self._return
21
+
22
+
23
+ # in beta
24
+ class ChainVideoProcessor(ChainImgProcessor):
25
+ def __init__(self):
26
+ ChainImgProcessor.__init__(self)
27
+
28
+ self.video_save_codec = "libx264"
29
+ self.video_save_crf = 14
30
+
31
+ def init_with_plugins(self):
32
+ self.init_plugins(["core","core_video"])
33
+ self.display_init_info()
34
+
35
+ init_on_start_arr = self.init_on_start.split(",")
36
+ for proc_id in init_on_start_arr:
37
+ self.init_processor(proc_id)
38
+
39
+ def run_video_chain(self, source_video, target_video, fps, threads:int = 1, chain = None, params_frame_gen_func = None, video_audio = None):
40
+ import cv2
41
+ from tqdm import tqdm
42
+ from chain_img_processor.ffmpeg_writer import FFMPEG_VideoWriter # ffmpeg install needed
43
+
44
+ cap = cv2.VideoCapture(source_video)
45
+ # width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
46
+ # height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
47
+ frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
48
+
49
+ # first frame do manually - because upscale may happen, we need to estimate width/height
50
+ ret, frame = cap.read()
51
+ if params_frame_gen_func is not None:
52
+ params = params_frame_gen_func(self, frame)
53
+ else:
54
+ params = {}
55
+ params["original_frame"] = frame
56
+ frame_processed, params = self.run_chain(frame,params,chain)
57
+ height, width, channels = frame_processed.shape
58
+
59
+ self.fill_processors_for_thread_chains(threads,chain)
60
+ #print(self.processors_objects)
61
+ #import threading
62
+ #locks:list[threading.Lock] = []
63
+ locks: list[bool] = []
64
+ for i in range(threads):
65
+ #locks.append(threading.Lock())
66
+ locks.append(False)
67
+
68
+ temp = []
69
+ with FFMPEG_VideoWriter(target_video, (width, height), fps, codec=roop.globals.video_encoder, crf=roop.globals.video_quality, audiofile=video_audio) as output_video_ff:
70
+ with tqdm(total=frame_count, desc='Processing', unit="frame", dynamic_ncols=True,
71
+ bar_format='{l_bar}{bar}| {n_fmt}/{total_fmt} [{elapsed}<{remaining}, {rate_fmt}{postfix}]') as progress:
72
+
73
+ # do first frame
74
+ output_video_ff.write_frame(frame_processed)
75
+ progress.update(1) #
76
+ cnt_frames = 0
77
+
78
+ # do rest frames
79
+ while True:
80
+ # getting frame
81
+ ret, frame = cap.read()
82
+
83
+ if not ret:
84
+ break
85
+ cnt_frames+=1
86
+ thread_ind = cnt_frames % threads
87
+ # we are having an array of length %gpu_threads%, running in parallel
88
+ # so if array is equal or longer than gpu threads, waiting
89
+ #while len(temp) >= threads:
90
+ while locks[thread_ind]:
91
+ #print('WAIT', thread_ind)
92
+ # we are order dependent, so we are forced to wait for first element to finish. When finished removing thread from the list
93
+ frame_processed, params = temp.pop(0).join()
94
+ locks[params["_thread_index"]] = False
95
+ #print('OFF',cnt_frames,locks[params["_thread_index"]],locks)
96
+ # writing into output
97
+ output_video_ff.write_frame(frame_processed)
98
+ # updating the status
99
+ progress.update(1)
100
+
101
+ # calc params for frame
102
+ if params_frame_gen_func is not None:
103
+ params = params_frame_gen_func(self,frame)
104
+ else:
105
+ params = {}
106
+
107
+ # adding new frame to the list and starting it
108
+ locks[thread_ind] = True
109
+ #print('ON', cnt_frames, thread_ind, locks)
110
+ params["original_frame"] = frame
111
+ temp.append(
112
+ ThreadWithReturnValue(target=self.run_chain, args=(frame, params, chain, thread_ind)))
113
+ temp[-1].start()
114
+
115
+ while len(temp) > 0:
116
+ # we are order dependent, so we are forced to wait for first element to finish. When finished removing thread from the list
117
+ frame_processed, params = temp.pop(0).join()
118
+ locks[params["_thread_index"]] = False
119
+ # writing into output
120
+ output_video_ff.write_frame(frame_processed)
121
+
122
+ progress.update(1)
123
+
124
+ #print("FINAL", locks)
125
+
126
+ _video_processor:ChainVideoProcessor = None
127
+ def get_single_video_processor() -> ChainVideoProcessor:
128
+ global _video_processor
129
+ if _video_processor is None:
130
+ _video_processor = ChainVideoProcessor()
131
+ _video_processor.init_with_plugins()
132
+ return _video_processor
clip/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+ from .clip import *
clip/bpe_simple_vocab_16e6.txt.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:924691ac288e54409236115652ad4aa250f48203de50a9e4722a6ecd48d6804a
3
+ size 1356917
clip/clip.py ADDED
@@ -0,0 +1,245 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import hashlib
2
+ import os
3
+ import urllib
4
+ import warnings
5
+ from typing import Any, Union, List
6
+ from pkg_resources import packaging
7
+
8
+ import torch
9
+ from PIL import Image
10
+ from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize
11
+ from tqdm import tqdm
12
+
13
+ from .model import build_model
14
+ from .simple_tokenizer import SimpleTokenizer as _Tokenizer
15
+
16
+ try:
17
+ from torchvision.transforms import InterpolationMode
18
+ BICUBIC = InterpolationMode.BICUBIC
19
+ except ImportError:
20
+ BICUBIC = Image.BICUBIC
21
+
22
+
23
+ if packaging.version.parse(torch.__version__) < packaging.version.parse("1.7.1"):
24
+ warnings.warn("PyTorch version 1.7.1 or higher is recommended")
25
+
26
+
27
+ __all__ = ["available_models", "load", "tokenize"]
28
+ _tokenizer = _Tokenizer()
29
+
30
+ _MODELS = {
31
+ "RN50": "https://openaipublic.azureedge.net/clip/models/afeb0e10f9e5a86da6080e35cf09123aca3b358a0c3e3b6c78a7b63bc04b6762/RN50.pt",
32
+ "RN101": "https://openaipublic.azureedge.net/clip/models/8fa8567bab74a42d41c5915025a8e4538c3bdbe8804a470a72f30b0d94fab599/RN101.pt",
33
+ "RN50x4": "https://openaipublic.azureedge.net/clip/models/7e526bd135e493cef0776de27d5f42653e6b4c8bf9e0f653bb11773263205fdd/RN50x4.pt",
34
+ "RN50x16": "https://openaipublic.azureedge.net/clip/models/52378b407f34354e150460fe41077663dd5b39c54cd0bfd2b27167a4a06ec9aa/RN50x16.pt",
35
+ "RN50x64": "https://openaipublic.azureedge.net/clip/models/be1cfb55d75a9666199fb2206c106743da0f6468c9d327f3e0d0a543a9919d9c/RN50x64.pt",
36
+ "ViT-B/32": "https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt",
37
+ "ViT-B/16": "https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt",
38
+ "ViT-L/14": "https://openaipublic.azureedge.net/clip/models/b8cca3fd41ae0c99ba7e8951adf17d267cdb84cd88be6f7c2e0eca1737a03836/ViT-L-14.pt",
39
+ "ViT-L/14@336px": "https://openaipublic.azureedge.net/clip/models/3035c92b350959924f9f00213499208652fc7ea050643e8b385c2dac08641f02/ViT-L-14-336px.pt",
40
+ }
41
+
42
+
43
+ def _download(url: str, root: str):
44
+ os.makedirs(root, exist_ok=True)
45
+ filename = os.path.basename(url)
46
+
47
+ expected_sha256 = url.split("/")[-2]
48
+ download_target = os.path.join(root, filename)
49
+
50
+ if os.path.exists(download_target) and not os.path.isfile(download_target):
51
+ raise RuntimeError(f"{download_target} exists and is not a regular file")
52
+
53
+ if os.path.isfile(download_target):
54
+ if hashlib.sha256(open(download_target, "rb").read()).hexdigest() == expected_sha256:
55
+ return download_target
56
+ else:
57
+ warnings.warn(f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file")
58
+
59
+ with urllib.request.urlopen(url) as source, open(download_target, "wb") as output:
60
+ with tqdm(total=int(source.info().get("Content-Length")), ncols=80, unit='iB', unit_scale=True, unit_divisor=1024) as loop:
61
+ while True:
62
+ buffer = source.read(8192)
63
+ if not buffer:
64
+ break
65
+
66
+ output.write(buffer)
67
+ loop.update(len(buffer))
68
+
69
+ if hashlib.sha256(open(download_target, "rb").read()).hexdigest() != expected_sha256:
70
+ raise RuntimeError("Model has been downloaded but the SHA256 checksum does not not match")
71
+
72
+ return download_target
73
+
74
+
75
+ def _convert_image_to_rgb(image):
76
+ return image.convert("RGB")
77
+
78
+
79
+ def _transform(n_px):
80
+ return Compose([
81
+ Resize(n_px, interpolation=BICUBIC),
82
+ CenterCrop(n_px),
83
+ _convert_image_to_rgb,
84
+ ToTensor(),
85
+ Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)),
86
+ ])
87
+
88
+
89
+ def available_models() -> List[str]:
90
+ """Returns the names of available CLIP models"""
91
+ return list(_MODELS.keys())
92
+
93
+
94
+ def load(name: str, device: Union[str, torch.device] = "cuda" if torch.cuda.is_available() else "cpu", jit: bool = False, download_root: str = None):
95
+ """Load a CLIP model
96
+
97
+ Parameters
98
+ ----------
99
+ name : str
100
+ A model name listed by `clip.available_models()`, or the path to a model checkpoint containing the state_dict
101
+
102
+ device : Union[str, torch.device]
103
+ The device to put the loaded model
104
+
105
+ jit : bool
106
+ Whether to load the optimized JIT model or more hackable non-JIT model (default).
107
+
108
+ download_root: str
109
+ path to download the model files; by default, it uses "~/.cache/clip"
110
+
111
+ Returns
112
+ -------
113
+ model : torch.nn.Module
114
+ The CLIP model
115
+
116
+ preprocess : Callable[[PIL.Image], torch.Tensor]
117
+ A torchvision transform that converts a PIL image into a tensor that the returned model can take as its input
118
+ """
119
+ if name in _MODELS:
120
+ model_path = _download(_MODELS[name], download_root or os.path.expanduser("~/.cache/clip"))
121
+ elif os.path.isfile(name):
122
+ model_path = name
123
+ else:
124
+ raise RuntimeError(f"Model {name} not found; available models = {available_models()}")
125
+
126
+ with open(model_path, 'rb') as opened_file:
127
+ try:
128
+ # loading JIT archive
129
+ model = torch.jit.load(opened_file, map_location=device if jit else "cpu").eval()
130
+ state_dict = None
131
+ except RuntimeError:
132
+ # loading saved state dict
133
+ if jit:
134
+ warnings.warn(f"File {model_path} is not a JIT archive. Loading as a state dict instead")
135
+ jit = False
136
+ state_dict = torch.load(opened_file, map_location="cpu")
137
+
138
+ if not jit:
139
+ model = build_model(state_dict or model.state_dict()).to(device)
140
+ if str(device) == "cpu":
141
+ model.float()
142
+ return model, _transform(model.visual.input_resolution)
143
+
144
+ # patch the device names
145
+ device_holder = torch.jit.trace(lambda: torch.ones([]).to(torch.device(device)), example_inputs=[])
146
+ device_node = [n for n in device_holder.graph.findAllNodes("prim::Constant") if "Device" in repr(n)][-1]
147
+
148
+ def _node_get(node: torch._C.Node, key: str):
149
+ """Gets attributes of a node which is polymorphic over return type.
150
+
151
+ From https://github.com/pytorch/pytorch/pull/82628
152
+ """
153
+ sel = node.kindOf(key)
154
+ return getattr(node, sel)(key)
155
+
156
+ def patch_device(module):
157
+ try:
158
+ graphs = [module.graph] if hasattr(module, "graph") else []
159
+ except RuntimeError:
160
+ graphs = []
161
+
162
+ if hasattr(module, "forward1"):
163
+ graphs.append(module.forward1.graph)
164
+
165
+ for graph in graphs:
166
+ for node in graph.findAllNodes("prim::Constant"):
167
+ if "value" in node.attributeNames() and str(_node_get(node, "value")).startswith("cuda"):
168
+ node.copyAttributes(device_node)
169
+
170
+ model.apply(patch_device)
171
+ patch_device(model.encode_image)
172
+ patch_device(model.encode_text)
173
+
174
+ # patch dtype to float32 on CPU
175
+ if str(device) == "cpu":
176
+ float_holder = torch.jit.trace(lambda: torch.ones([]).float(), example_inputs=[])
177
+ float_input = list(float_holder.graph.findNode("aten::to").inputs())[1]
178
+ float_node = float_input.node()
179
+
180
+ def patch_float(module):
181
+ try:
182
+ graphs = [module.graph] if hasattr(module, "graph") else []
183
+ except RuntimeError:
184
+ graphs = []
185
+
186
+ if hasattr(module, "forward1"):
187
+ graphs.append(module.forward1.graph)
188
+
189
+ for graph in graphs:
190
+ for node in graph.findAllNodes("aten::to"):
191
+ inputs = list(node.inputs())
192
+ for i in [1, 2]: # dtype can be the second or third argument to aten::to()
193
+ if _node_get(inputs[i].node(), "value") == 5:
194
+ inputs[i].node().copyAttributes(float_node)
195
+
196
+ model.apply(patch_float)
197
+ patch_float(model.encode_image)
198
+ patch_float(model.encode_text)
199
+
200
+ model.float()
201
+
202
+ return model, _transform(model.input_resolution.item())
203
+
204
+
205
+ def tokenize(texts: Union[str, List[str]], context_length: int = 77, truncate: bool = False) -> Union[torch.IntTensor, torch.LongTensor]:
206
+ """
207
+ Returns the tokenized representation of given input string(s)
208
+
209
+ Parameters
210
+ ----------
211
+ texts : Union[str, List[str]]
212
+ An input string or a list of input strings to tokenize
213
+
214
+ context_length : int
215
+ The context length to use; all CLIP models use 77 as the context length
216
+
217
+ truncate: bool
218
+ Whether to truncate the text in case its encoding is longer than the context length
219
+
220
+ Returns
221
+ -------
222
+ A two-dimensional tensor containing the resulting tokens, shape = [number of input strings, context_length].
223
+ We return LongTensor when torch version is <1.8.0, since older index_select requires indices to be long.
224
+ """
225
+ if isinstance(texts, str):
226
+ texts = [texts]
227
+
228
+ sot_token = _tokenizer.encoder["<|startoftext|>"]
229
+ eot_token = _tokenizer.encoder["<|endoftext|>"]
230
+ all_tokens = [[sot_token] + _tokenizer.encode(text) + [eot_token] for text in texts]
231
+ if packaging.version.parse(torch.__version__) < packaging.version.parse("1.8.0"):
232
+ result = torch.zeros(len(all_tokens), context_length, dtype=torch.long)
233
+ else:
234
+ result = torch.zeros(len(all_tokens), context_length, dtype=torch.int)
235
+
236
+ for i, tokens in enumerate(all_tokens):
237
+ if len(tokens) > context_length:
238
+ if truncate:
239
+ tokens = tokens[:context_length]
240
+ tokens[-1] = eot_token
241
+ else:
242
+ raise RuntimeError(f"Input {texts[i]} is too long for context length {context_length}")
243
+ result[i, :len(tokens)] = torch.tensor(tokens)
244
+
245
+ return result
clip/clipseg.py ADDED
@@ -0,0 +1,538 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ from os.path import basename, dirname, join, isfile
3
+ import torch
4
+ from torch import nn
5
+ from torch.nn import functional as nnf
6
+ from torch.nn.modules.activation import ReLU
7
+
8
+
9
+ def get_prompt_list(prompt):
10
+ if prompt == 'plain':
11
+ return ['{}']
12
+ elif prompt == 'fixed':
13
+ return ['a photo of a {}.']
14
+ elif prompt == 'shuffle':
15
+ return ['a photo of a {}.', 'a photograph of a {}.', 'an image of a {}.', '{}.']
16
+ elif prompt == 'shuffle+':
17
+ return ['a photo of a {}.', 'a photograph of a {}.', 'an image of a {}.', '{}.',
18
+ 'a cropped photo of a {}.', 'a good photo of a {}.', 'a photo of one {}.',
19
+ 'a bad photo of a {}.', 'a photo of the {}.']
20
+ else:
21
+ raise ValueError('Invalid value for prompt')
22
+
23
+
24
+ def forward_multihead_attention(x, b, with_aff=False, attn_mask=None):
25
+ """
26
+ Simplified version of multihead attention (taken from torch source code but without tons of if clauses).
27
+ The mlp and layer norm come from CLIP.
28
+ x: input.
29
+ b: multihead attention module.
30
+ """
31
+
32
+ x_ = b.ln_1(x)
33
+ q, k, v = nnf.linear(x_, b.attn.in_proj_weight, b.attn.in_proj_bias).chunk(3, dim=-1)
34
+ tgt_len, bsz, embed_dim = q.size()
35
+
36
+ head_dim = embed_dim // b.attn.num_heads
37
+ scaling = float(head_dim) ** -0.5
38
+
39
+ q = q.contiguous().view(tgt_len, bsz * b.attn.num_heads, b.attn.head_dim).transpose(0, 1)
40
+ k = k.contiguous().view(-1, bsz * b.attn.num_heads, b.attn.head_dim).transpose(0, 1)
41
+ v = v.contiguous().view(-1, bsz * b.attn.num_heads, b.attn.head_dim).transpose(0, 1)
42
+
43
+ q = q * scaling
44
+
45
+ attn_output_weights = torch.bmm(q, k.transpose(1, 2)) # n_heads * batch_size, tokens^2, tokens^2
46
+ if attn_mask is not None:
47
+
48
+
49
+ attn_mask_type, attn_mask = attn_mask
50
+ n_heads = attn_output_weights.size(0) // attn_mask.size(0)
51
+ attn_mask = attn_mask.repeat(n_heads, 1)
52
+
53
+ if attn_mask_type == 'cls_token':
54
+ # the mask only affects similarities compared to the readout-token.
55
+ attn_output_weights[:, 0, 1:] = attn_output_weights[:, 0, 1:] * attn_mask[None,...]
56
+ # attn_output_weights[:, 0, 0] = 0*attn_output_weights[:, 0, 0]
57
+
58
+ if attn_mask_type == 'all':
59
+ # print(attn_output_weights.shape, attn_mask[:, None].shape)
60
+ attn_output_weights[:, 1:, 1:] = attn_output_weights[:, 1:, 1:] * attn_mask[:, None]
61
+
62
+
63
+ attn_output_weights = torch.softmax(attn_output_weights, dim=-1)
64
+
65
+ attn_output = torch.bmm(attn_output_weights, v)
66
+ attn_output = attn_output.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim)
67
+ attn_output = b.attn.out_proj(attn_output)
68
+
69
+ x = x + attn_output
70
+ x = x + b.mlp(b.ln_2(x))
71
+
72
+ if with_aff:
73
+ return x, attn_output_weights
74
+ else:
75
+ return x
76
+
77
+
78
+ class CLIPDenseBase(nn.Module):
79
+
80
+ def __init__(self, version, reduce_cond, reduce_dim, prompt, n_tokens):
81
+ super().__init__()
82
+
83
+ import clip
84
+
85
+ # prec = torch.FloatTensor
86
+ self.clip_model, _ = clip.load(version, device='cpu', jit=False)
87
+ self.model = self.clip_model.visual
88
+
89
+ # if not None, scale conv weights such that we obtain n_tokens.
90
+ self.n_tokens = n_tokens
91
+
92
+ for p in self.clip_model.parameters():
93
+ p.requires_grad_(False)
94
+
95
+ # conditional
96
+ if reduce_cond is not None:
97
+ self.reduce_cond = nn.Linear(512, reduce_cond)
98
+ for p in self.reduce_cond.parameters():
99
+ p.requires_grad_(False)
100
+ else:
101
+ self.reduce_cond = None
102
+
103
+ self.film_mul = nn.Linear(512 if reduce_cond is None else reduce_cond, reduce_dim)
104
+ self.film_add = nn.Linear(512 if reduce_cond is None else reduce_cond, reduce_dim)
105
+
106
+ self.reduce = nn.Linear(768, reduce_dim)
107
+
108
+ self.prompt_list = get_prompt_list(prompt)
109
+
110
+ # precomputed prompts
111
+ import pickle
112
+ if isfile('precomputed_prompt_vectors.pickle'):
113
+ precomp = pickle.load(open('precomputed_prompt_vectors.pickle', 'rb'))
114
+ self.precomputed_prompts = {k: torch.from_numpy(v) for k, v in precomp.items()}
115
+ else:
116
+ self.precomputed_prompts = dict()
117
+
118
+ def rescaled_pos_emb(self, new_size):
119
+ assert len(new_size) == 2
120
+
121
+ a = self.model.positional_embedding[1:].T.view(1, 768, *self.token_shape)
122
+ b = nnf.interpolate(a, new_size, mode='bicubic', align_corners=False).squeeze(0).view(768, new_size[0]*new_size[1]).T
123
+ return torch.cat([self.model.positional_embedding[:1], b])
124
+
125
+ def visual_forward(self, x_inp, extract_layers=(), skip=False, mask=None):
126
+
127
+
128
+ with torch.no_grad():
129
+
130
+ inp_size = x_inp.shape[2:]
131
+
132
+ if self.n_tokens is not None:
133
+ stride2 = x_inp.shape[2] // self.n_tokens
134
+ conv_weight2 = nnf.interpolate(self.model.conv1.weight, (stride2, stride2), mode='bilinear', align_corners=True)
135
+ x = nnf.conv2d(x_inp, conv_weight2, bias=self.model.conv1.bias, stride=stride2, dilation=self.model.conv1.dilation)
136
+ else:
137
+ x = self.model.conv1(x_inp) # shape = [*, width, grid, grid]
138
+
139
+ x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2]
140
+ x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
141
+
142
+ x = torch.cat([self.model.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) # shape = [*, grid ** 2 + 1, width]
143
+
144
+ standard_n_tokens = 50 if self.model.conv1.kernel_size[0] == 32 else 197
145
+
146
+ if x.shape[1] != standard_n_tokens:
147
+ new_shape = int(math.sqrt(x.shape[1]-1))
148
+ x = x + self.rescaled_pos_emb((new_shape, new_shape)).to(x.dtype)[None,:,:]
149
+ else:
150
+ x = x + self.model.positional_embedding.to(x.dtype)
151
+
152
+ x = self.model.ln_pre(x)
153
+
154
+ x = x.permute(1, 0, 2) # NLD -> LND
155
+
156
+ activations, affinities = [], []
157
+ for i, res_block in enumerate(self.model.transformer.resblocks):
158
+
159
+ if mask is not None:
160
+ mask_layer, mask_type, mask_tensor = mask
161
+ if mask_layer == i or mask_layer == 'all':
162
+ # import ipdb; ipdb.set_trace()
163
+ size = int(math.sqrt(x.shape[0] - 1))
164
+
165
+ attn_mask = (mask_type, nnf.interpolate(mask_tensor.unsqueeze(1).float(), (size, size)).view(mask_tensor.shape[0], size * size))
166
+
167
+ else:
168
+ attn_mask = None
169
+ else:
170
+ attn_mask = None
171
+
172
+ x, aff_per_head = forward_multihead_attention(x, res_block, with_aff=True, attn_mask=attn_mask)
173
+
174
+ if i in extract_layers:
175
+ affinities += [aff_per_head]
176
+
177
+ #if self.n_tokens is not None:
178
+ # activations += [nnf.interpolate(x, inp_size, mode='bilinear', align_corners=True)]
179
+ #else:
180
+ activations += [x]
181
+
182
+ if len(extract_layers) > 0 and i == max(extract_layers) and skip:
183
+ print('early skip')
184
+ break
185
+
186
+ x = x.permute(1, 0, 2) # LND -> NLD
187
+ x = self.model.ln_post(x[:, 0, :])
188
+
189
+ if self.model.proj is not None:
190
+ x = x @ self.model.proj
191
+
192
+ return x, activations, affinities
193
+
194
+ def sample_prompts(self, words, prompt_list=None):
195
+
196
+ prompt_list = prompt_list if prompt_list is not None else self.prompt_list
197
+
198
+ prompt_indices = torch.multinomial(torch.ones(len(prompt_list)), len(words), replacement=True)
199
+ prompts = [prompt_list[i] for i in prompt_indices]
200
+ return [promt.format(w) for promt, w in zip(prompts, words)]
201
+
202
+ def get_cond_vec(self, conditional, batch_size):
203
+ # compute conditional from a single string
204
+ if conditional is not None and type(conditional) == str:
205
+ cond = self.compute_conditional(conditional)
206
+ cond = cond.repeat(batch_size, 1)
207
+
208
+ # compute conditional from string list/tuple
209
+ elif conditional is not None and type(conditional) in {list, tuple} and type(conditional[0]) == str:
210
+ assert len(conditional) == batch_size
211
+ cond = self.compute_conditional(conditional)
212
+
213
+ # use conditional directly
214
+ elif conditional is not None and type(conditional) == torch.Tensor and conditional.ndim == 2:
215
+ cond = conditional
216
+
217
+ # compute conditional from image
218
+ elif conditional is not None and type(conditional) == torch.Tensor:
219
+ with torch.no_grad():
220
+ cond, _, _ = self.visual_forward(conditional)
221
+ else:
222
+ raise ValueError('invalid conditional')
223
+ return cond
224
+
225
+ def compute_conditional(self, conditional):
226
+ import clip
227
+
228
+ dev = next(self.parameters()).device
229
+
230
+ if type(conditional) in {list, tuple}:
231
+ text_tokens = clip.tokenize(conditional).to(dev)
232
+ cond = self.clip_model.encode_text(text_tokens)
233
+ else:
234
+ if conditional in self.precomputed_prompts:
235
+ cond = self.precomputed_prompts[conditional].float().to(dev)
236
+ else:
237
+ text_tokens = clip.tokenize([conditional]).to(dev)
238
+ cond = self.clip_model.encode_text(text_tokens)[0]
239
+
240
+ if self.shift_vector is not None:
241
+ return cond + self.shift_vector
242
+ else:
243
+ return cond
244
+
245
+
246
+ def clip_load_untrained(version):
247
+ assert version == 'ViT-B/16'
248
+ from clip.model import CLIP
249
+ from clip.clip import _MODELS, _download
250
+ model = torch.jit.load(_download(_MODELS['ViT-B/16'])).eval()
251
+ state_dict = model.state_dict()
252
+
253
+ vision_width = state_dict["visual.conv1.weight"].shape[0]
254
+ vision_layers = len([k for k in state_dict.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")])
255
+ vision_patch_size = state_dict["visual.conv1.weight"].shape[-1]
256
+ grid_size = round((state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5)
257
+ image_resolution = vision_patch_size * grid_size
258
+ embed_dim = state_dict["text_projection"].shape[1]
259
+ context_length = state_dict["positional_embedding"].shape[0]
260
+ vocab_size = state_dict["token_embedding.weight"].shape[0]
261
+ transformer_width = state_dict["ln_final.weight"].shape[0]
262
+ transformer_heads = transformer_width // 64
263
+ transformer_layers = len(set(k.split(".")[2] for k in state_dict if k.startswith(f"transformer.resblocks")))
264
+
265
+ return CLIP(embed_dim, image_resolution, vision_layers, vision_width, vision_patch_size,
266
+ context_length, vocab_size, transformer_width, transformer_heads, transformer_layers)
267
+
268
+
269
+ class CLIPDensePredT(CLIPDenseBase):
270
+
271
+ def __init__(self, version='ViT-B/32', extract_layers=(3, 6, 9), cond_layer=0, reduce_dim=128, n_heads=4, prompt='fixed',
272
+ extra_blocks=0, reduce_cond=None, fix_shift=False,
273
+ learn_trans_conv_only=False, limit_to_clip_only=False, upsample=False,
274
+ add_calibration=False, rev_activations=False, trans_conv=None, n_tokens=None, complex_trans_conv=False):
275
+
276
+ super().__init__(version, reduce_cond, reduce_dim, prompt, n_tokens)
277
+ # device = 'cpu'
278
+
279
+ self.extract_layers = extract_layers
280
+ self.cond_layer = cond_layer
281
+ self.limit_to_clip_only = limit_to_clip_only
282
+ self.process_cond = None
283
+ self.rev_activations = rev_activations
284
+
285
+ depth = len(extract_layers)
286
+
287
+ if add_calibration:
288
+ self.calibration_conds = 1
289
+
290
+ self.upsample_proj = nn.Conv2d(reduce_dim, 1, kernel_size=1) if upsample else None
291
+
292
+ self.add_activation1 = True
293
+
294
+ self.version = version
295
+
296
+ self.token_shape = {'ViT-B/32': (7, 7), 'ViT-B/16': (14, 14)}[version]
297
+
298
+ if fix_shift:
299
+ # self.shift_vector = nn.Parameter(torch.load(join(dirname(basename(__file__)), 'clip_text_shift_vector.pth')), requires_grad=False)
300
+ self.shift_vector = nn.Parameter(torch.load(join(dirname(basename(__file__)), 'shift_text_to_vis.pth')), requires_grad=False)
301
+ # self.shift_vector = nn.Parameter(-1*torch.load(join(dirname(basename(__file__)), 'shift2.pth')), requires_grad=False)
302
+ else:
303
+ self.shift_vector = None
304
+
305
+ if trans_conv is None:
306
+ trans_conv_ks = {'ViT-B/32': (32, 32), 'ViT-B/16': (16, 16)}[version]
307
+ else:
308
+ # explicitly define transposed conv kernel size
309
+ trans_conv_ks = (trans_conv, trans_conv)
310
+
311
+ if not complex_trans_conv:
312
+ self.trans_conv = nn.ConvTranspose2d(reduce_dim, 1, trans_conv_ks, stride=trans_conv_ks)
313
+ else:
314
+ assert trans_conv_ks[0] == trans_conv_ks[1]
315
+
316
+ tp_kernels = (trans_conv_ks[0] // 4, trans_conv_ks[0] // 4)
317
+
318
+ self.trans_conv = nn.Sequential(
319
+ nn.Conv2d(reduce_dim, reduce_dim, kernel_size=3, padding=1),
320
+ nn.ReLU(),
321
+ nn.ConvTranspose2d(reduce_dim, reduce_dim // 2, kernel_size=tp_kernels[0], stride=tp_kernels[0]),
322
+ nn.ReLU(),
323
+ nn.ConvTranspose2d(reduce_dim // 2, 1, kernel_size=tp_kernels[1], stride=tp_kernels[1]),
324
+ )
325
+
326
+ # self.trans_conv = nn.ConvTranspose2d(reduce_dim, 1, trans_conv_ks, stride=trans_conv_ks)
327
+
328
+ assert len(self.extract_layers) == depth
329
+
330
+ self.reduces = nn.ModuleList([nn.Linear(768, reduce_dim) for _ in range(depth)])
331
+ self.blocks = nn.ModuleList([nn.TransformerEncoderLayer(d_model=reduce_dim, nhead=n_heads) for _ in range(len(self.extract_layers))])
332
+ self.extra_blocks = nn.ModuleList([nn.TransformerEncoderLayer(d_model=reduce_dim, nhead=n_heads) for _ in range(extra_blocks)])
333
+
334
+ # refinement and trans conv
335
+
336
+ if learn_trans_conv_only:
337
+ for p in self.parameters():
338
+ p.requires_grad_(False)
339
+
340
+ for p in self.trans_conv.parameters():
341
+ p.requires_grad_(True)
342
+
343
+ self.prompt_list = get_prompt_list(prompt)
344
+
345
+
346
+ def forward(self, inp_image, conditional=None, return_features=False, mask=None):
347
+
348
+ assert type(return_features) == bool
349
+
350
+ inp_image = inp_image.to(self.model.positional_embedding.device)
351
+
352
+ if mask is not None:
353
+ raise ValueError('mask not supported')
354
+
355
+ # x_inp = normalize(inp_image)
356
+ x_inp = inp_image
357
+
358
+ bs, dev = inp_image.shape[0], x_inp.device
359
+
360
+ cond = self.get_cond_vec(conditional, bs)
361
+
362
+ visual_q, activations, _ = self.visual_forward(x_inp, extract_layers=[0] + list(self.extract_layers))
363
+
364
+ activation1 = activations[0]
365
+ activations = activations[1:]
366
+
367
+ _activations = activations[::-1] if not self.rev_activations else activations
368
+
369
+ a = None
370
+ for i, (activation, block, reduce) in enumerate(zip(_activations, self.blocks, self.reduces)):
371
+
372
+ if a is not None:
373
+ a = reduce(activation) + a
374
+ else:
375
+ a = reduce(activation)
376
+
377
+ if i == self.cond_layer:
378
+ if self.reduce_cond is not None:
379
+ cond = self.reduce_cond(cond)
380
+
381
+ a = self.film_mul(cond) * a + self.film_add(cond)
382
+
383
+ a = block(a)
384
+
385
+ for block in self.extra_blocks:
386
+ a = a + block(a)
387
+
388
+ a = a[1:].permute(1, 2, 0) # rm cls token and -> BS, Feats, Tokens
389
+
390
+ size = int(math.sqrt(a.shape[2]))
391
+
392
+ a = a.view(bs, a.shape[1], size, size)
393
+
394
+ a = self.trans_conv(a)
395
+
396
+ if self.n_tokens is not None:
397
+ a = nnf.interpolate(a, x_inp.shape[2:], mode='bilinear', align_corners=True)
398
+
399
+ if self.upsample_proj is not None:
400
+ a = self.upsample_proj(a)
401
+ a = nnf.interpolate(a, x_inp.shape[2:], mode='bilinear')
402
+
403
+ if return_features:
404
+ return a, visual_q, cond, [activation1] + activations
405
+ else:
406
+ return a,
407
+
408
+
409
+
410
+ class CLIPDensePredTMasked(CLIPDensePredT):
411
+
412
+ def __init__(self, version='ViT-B/32', extract_layers=(3, 6, 9), cond_layer=0, reduce_dim=128, n_heads=4,
413
+ prompt='fixed', extra_blocks=0, reduce_cond=None, fix_shift=False, learn_trans_conv_only=False,
414
+ refine=None, limit_to_clip_only=False, upsample=False, add_calibration=False, n_tokens=None):
415
+
416
+ super().__init__(version=version, extract_layers=extract_layers, cond_layer=cond_layer, reduce_dim=reduce_dim,
417
+ n_heads=n_heads, prompt=prompt, extra_blocks=extra_blocks, reduce_cond=reduce_cond,
418
+ fix_shift=fix_shift, learn_trans_conv_only=learn_trans_conv_only,
419
+ limit_to_clip_only=limit_to_clip_only, upsample=upsample, add_calibration=add_calibration,
420
+ n_tokens=n_tokens)
421
+
422
+ def visual_forward_masked(self, img_s, seg_s):
423
+ return super().visual_forward(img_s, mask=('all', 'cls_token', seg_s))
424
+
425
+ def forward(self, img_q, cond_or_img_s, seg_s=None, return_features=False):
426
+
427
+ if seg_s is None:
428
+ cond = cond_or_img_s
429
+ else:
430
+ img_s = cond_or_img_s
431
+
432
+ with torch.no_grad():
433
+ cond, _, _ = self.visual_forward_masked(img_s, seg_s)
434
+
435
+ return super().forward(img_q, cond, return_features=return_features)
436
+
437
+
438
+
439
+ class CLIPDenseBaseline(CLIPDenseBase):
440
+
441
+ def __init__(self, version='ViT-B/32', cond_layer=0,
442
+ extract_layer=9, reduce_dim=128, reduce2_dim=None, prompt='fixed',
443
+ reduce_cond=None, limit_to_clip_only=False, n_tokens=None):
444
+
445
+ super().__init__(version, reduce_cond, reduce_dim, prompt, n_tokens)
446
+ device = 'cpu'
447
+
448
+ # self.cond_layer = cond_layer
449
+ self.extract_layer = extract_layer
450
+ self.limit_to_clip_only = limit_to_clip_only
451
+ self.shift_vector = None
452
+
453
+ self.token_shape = {'ViT-B/32': (7, 7), 'ViT-B/16': (14, 14)}[version]
454
+
455
+ assert reduce2_dim is not None
456
+
457
+ self.reduce2 = nn.Sequential(
458
+ nn.Linear(reduce_dim, reduce2_dim),
459
+ nn.ReLU(),
460
+ nn.Linear(reduce2_dim, reduce_dim)
461
+ )
462
+
463
+ trans_conv_ks = {'ViT-B/32': (32, 32), 'ViT-B/16': (16, 16)}[version]
464
+ self.trans_conv = nn.ConvTranspose2d(reduce_dim, 1, trans_conv_ks, stride=trans_conv_ks)
465
+
466
+
467
+ def forward(self, inp_image, conditional=None, return_features=False):
468
+
469
+ inp_image = inp_image.to(self.model.positional_embedding.device)
470
+
471
+ # x_inp = normalize(inp_image)
472
+ x_inp = inp_image
473
+
474
+ bs, dev = inp_image.shape[0], x_inp.device
475
+
476
+ cond = self.get_cond_vec(conditional, bs)
477
+
478
+ visual_q, activations, affinities = self.visual_forward(x_inp, extract_layers=[self.extract_layer])
479
+
480
+ a = activations[0]
481
+ a = self.reduce(a)
482
+ a = self.film_mul(cond) * a + self.film_add(cond)
483
+
484
+ if self.reduce2 is not None:
485
+ a = self.reduce2(a)
486
+
487
+ # the original model would execute a transformer block here
488
+
489
+ a = a[1:].permute(1, 2, 0) # rm cls token and -> BS, Feats, Tokens
490
+
491
+ size = int(math.sqrt(a.shape[2]))
492
+
493
+ a = a.view(bs, a.shape[1], size, size)
494
+ a = self.trans_conv(a)
495
+
496
+ if return_features:
497
+ return a, visual_q, cond, activations
498
+ else:
499
+ return a,
500
+
501
+
502
+ class CLIPSegMultiLabel(nn.Module):
503
+
504
+ def __init__(self, model) -> None:
505
+ super().__init__()
506
+
507
+ from third_party.JoEm.data_loader import get_seen_idx, get_unseen_idx, VOC
508
+
509
+ self.pascal_classes = VOC
510
+
511
+ from clip.clipseg import CLIPDensePredT
512
+ from general_utils import load_model
513
+ # self.clipseg = load_model('rd64-vit16-neg0.2-phrasecut', strict=False)
514
+ self.clipseg = load_model(model, strict=False)
515
+
516
+ self.clipseg.eval()
517
+
518
+ def forward(self, x):
519
+
520
+ bs = x.shape[0]
521
+ out = torch.ones(21, bs, 352, 352).to(x.device) * -10
522
+
523
+ for class_id, class_name in enumerate(self.pascal_classes):
524
+
525
+ fac = 3 if class_name == 'background' else 1
526
+
527
+ with torch.no_grad():
528
+ pred = torch.sigmoid(self.clipseg(x, class_name)[0][:,0]) * fac
529
+
530
+ out[class_id] += pred
531
+
532
+
533
+ out = out.permute(1, 0, 2, 3)
534
+
535
+ return out
536
+
537
+ # construct output tensor
538
+
clip/model.py ADDED
@@ -0,0 +1,436 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from collections import OrderedDict
2
+ from typing import Tuple, Union
3
+
4
+ import numpy as np
5
+ import torch
6
+ import torch.nn.functional as F
7
+ from torch import nn
8
+
9
+
10
+ class Bottleneck(nn.Module):
11
+ expansion = 4
12
+
13
+ def __init__(self, inplanes, planes, stride=1):
14
+ super().__init__()
15
+
16
+ # all conv layers have stride 1. an avgpool is performed after the second convolution when stride > 1
17
+ self.conv1 = nn.Conv2d(inplanes, planes, 1, bias=False)
18
+ self.bn1 = nn.BatchNorm2d(planes)
19
+ self.relu1 = nn.ReLU(inplace=True)
20
+
21
+ self.conv2 = nn.Conv2d(planes, planes, 3, padding=1, bias=False)
22
+ self.bn2 = nn.BatchNorm2d(planes)
23
+ self.relu2 = nn.ReLU(inplace=True)
24
+
25
+ self.avgpool = nn.AvgPool2d(stride) if stride > 1 else nn.Identity()
26
+
27
+ self.conv3 = nn.Conv2d(planes, planes * self.expansion, 1, bias=False)
28
+ self.bn3 = nn.BatchNorm2d(planes * self.expansion)
29
+ self.relu3 = nn.ReLU(inplace=True)
30
+
31
+ self.downsample = None
32
+ self.stride = stride
33
+
34
+ if stride > 1 or inplanes != planes * Bottleneck.expansion:
35
+ # downsampling layer is prepended with an avgpool, and the subsequent convolution has stride 1
36
+ self.downsample = nn.Sequential(OrderedDict([
37
+ ("-1", nn.AvgPool2d(stride)),
38
+ ("0", nn.Conv2d(inplanes, planes * self.expansion, 1, stride=1, bias=False)),
39
+ ("1", nn.BatchNorm2d(planes * self.expansion))
40
+ ]))
41
+
42
+ def forward(self, x: torch.Tensor):
43
+ identity = x
44
+
45
+ out = self.relu1(self.bn1(self.conv1(x)))
46
+ out = self.relu2(self.bn2(self.conv2(out)))
47
+ out = self.avgpool(out)
48
+ out = self.bn3(self.conv3(out))
49
+
50
+ if self.downsample is not None:
51
+ identity = self.downsample(x)
52
+
53
+ out += identity
54
+ out = self.relu3(out)
55
+ return out
56
+
57
+
58
+ class AttentionPool2d(nn.Module):
59
+ def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None):
60
+ super().__init__()
61
+ self.positional_embedding = nn.Parameter(torch.randn(spacial_dim ** 2 + 1, embed_dim) / embed_dim ** 0.5)
62
+ self.k_proj = nn.Linear(embed_dim, embed_dim)
63
+ self.q_proj = nn.Linear(embed_dim, embed_dim)
64
+ self.v_proj = nn.Linear(embed_dim, embed_dim)
65
+ self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim)
66
+ self.num_heads = num_heads
67
+
68
+ def forward(self, x):
69
+ x = x.flatten(start_dim=2).permute(2, 0, 1) # NCHW -> (HW)NC
70
+ x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (HW+1)NC
71
+ x = x + self.positional_embedding[:, None, :].to(x.dtype) # (HW+1)NC
72
+ x, _ = F.multi_head_attention_forward(
73
+ query=x[:1], key=x, value=x,
74
+ embed_dim_to_check=x.shape[-1],
75
+ num_heads=self.num_heads,
76
+ q_proj_weight=self.q_proj.weight,
77
+ k_proj_weight=self.k_proj.weight,
78
+ v_proj_weight=self.v_proj.weight,
79
+ in_proj_weight=None,
80
+ in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]),
81
+ bias_k=None,
82
+ bias_v=None,
83
+ add_zero_attn=False,
84
+ dropout_p=0,
85
+ out_proj_weight=self.c_proj.weight,
86
+ out_proj_bias=self.c_proj.bias,
87
+ use_separate_proj_weight=True,
88
+ training=self.training,
89
+ need_weights=False
90
+ )
91
+ return x.squeeze(0)
92
+
93
+
94
+ class ModifiedResNet(nn.Module):
95
+ """
96
+ A ResNet class that is similar to torchvision's but contains the following changes:
97
+ - There are now 3 "stem" convolutions as opposed to 1, with an average pool instead of a max pool.
98
+ - Performs anti-aliasing strided convolutions, where an avgpool is prepended to convolutions with stride > 1
99
+ - The final pooling layer is a QKV attention instead of an average pool
100
+ """
101
+
102
+ def __init__(self, layers, output_dim, heads, input_resolution=224, width=64):
103
+ super().__init__()
104
+ self.output_dim = output_dim
105
+ self.input_resolution = input_resolution
106
+
107
+ # the 3-layer stem
108
+ self.conv1 = nn.Conv2d(3, width // 2, kernel_size=3, stride=2, padding=1, bias=False)
109
+ self.bn1 = nn.BatchNorm2d(width // 2)
110
+ self.relu1 = nn.ReLU(inplace=True)
111
+ self.conv2 = nn.Conv2d(width // 2, width // 2, kernel_size=3, padding=1, bias=False)
112
+ self.bn2 = nn.BatchNorm2d(width // 2)
113
+ self.relu2 = nn.ReLU(inplace=True)
114
+ self.conv3 = nn.Conv2d(width // 2, width, kernel_size=3, padding=1, bias=False)
115
+ self.bn3 = nn.BatchNorm2d(width)
116
+ self.relu3 = nn.ReLU(inplace=True)
117
+ self.avgpool = nn.AvgPool2d(2)
118
+
119
+ # residual layers
120
+ self._inplanes = width # this is a *mutable* variable used during construction
121
+ self.layer1 = self._make_layer(width, layers[0])
122
+ self.layer2 = self._make_layer(width * 2, layers[1], stride=2)
123
+ self.layer3 = self._make_layer(width * 4, layers[2], stride=2)
124
+ self.layer4 = self._make_layer(width * 8, layers[3], stride=2)
125
+
126
+ embed_dim = width * 32 # the ResNet feature dimension
127
+ self.attnpool = AttentionPool2d(input_resolution // 32, embed_dim, heads, output_dim)
128
+
129
+ def _make_layer(self, planes, blocks, stride=1):
130
+ layers = [Bottleneck(self._inplanes, planes, stride)]
131
+
132
+ self._inplanes = planes * Bottleneck.expansion
133
+ for _ in range(1, blocks):
134
+ layers.append(Bottleneck(self._inplanes, planes))
135
+
136
+ return nn.Sequential(*layers)
137
+
138
+ def forward(self, x):
139
+ def stem(x):
140
+ x = self.relu1(self.bn1(self.conv1(x)))
141
+ x = self.relu2(self.bn2(self.conv2(x)))
142
+ x = self.relu3(self.bn3(self.conv3(x)))
143
+ x = self.avgpool(x)
144
+ return x
145
+
146
+ x = x.type(self.conv1.weight.dtype)
147
+ x = stem(x)
148
+ x = self.layer1(x)
149
+ x = self.layer2(x)
150
+ x = self.layer3(x)
151
+ x = self.layer4(x)
152
+ x = self.attnpool(x)
153
+
154
+ return x
155
+
156
+
157
+ class LayerNorm(nn.LayerNorm):
158
+ """Subclass torch's LayerNorm to handle fp16."""
159
+
160
+ def forward(self, x: torch.Tensor):
161
+ orig_type = x.dtype
162
+ ret = super().forward(x.type(torch.float32))
163
+ return ret.type(orig_type)
164
+
165
+
166
+ class QuickGELU(nn.Module):
167
+ def forward(self, x: torch.Tensor):
168
+ return x * torch.sigmoid(1.702 * x)
169
+
170
+
171
+ class ResidualAttentionBlock(nn.Module):
172
+ def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None):
173
+ super().__init__()
174
+
175
+ self.attn = nn.MultiheadAttention(d_model, n_head)
176
+ self.ln_1 = LayerNorm(d_model)
177
+ self.mlp = nn.Sequential(OrderedDict([
178
+ ("c_fc", nn.Linear(d_model, d_model * 4)),
179
+ ("gelu", QuickGELU()),
180
+ ("c_proj", nn.Linear(d_model * 4, d_model))
181
+ ]))
182
+ self.ln_2 = LayerNorm(d_model)
183
+ self.attn_mask = attn_mask
184
+
185
+ def attention(self, x: torch.Tensor):
186
+ self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None
187
+ return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0]
188
+
189
+ def forward(self, x: torch.Tensor):
190
+ x = x + self.attention(self.ln_1(x))
191
+ x = x + self.mlp(self.ln_2(x))
192
+ return x
193
+
194
+
195
+ class Transformer(nn.Module):
196
+ def __init__(self, width: int, layers: int, heads: int, attn_mask: torch.Tensor = None):
197
+ super().__init__()
198
+ self.width = width
199
+ self.layers = layers
200
+ self.resblocks = nn.Sequential(*[ResidualAttentionBlock(width, heads, attn_mask) for _ in range(layers)])
201
+
202
+ def forward(self, x: torch.Tensor):
203
+ return self.resblocks(x)
204
+
205
+
206
+ class VisionTransformer(nn.Module):
207
+ def __init__(self, input_resolution: int, patch_size: int, width: int, layers: int, heads: int, output_dim: int):
208
+ super().__init__()
209
+ self.input_resolution = input_resolution
210
+ self.output_dim = output_dim
211
+ self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False)
212
+
213
+ scale = width ** -0.5
214
+ self.class_embedding = nn.Parameter(scale * torch.randn(width))
215
+ self.positional_embedding = nn.Parameter(scale * torch.randn((input_resolution // patch_size) ** 2 + 1, width))
216
+ self.ln_pre = LayerNorm(width)
217
+
218
+ self.transformer = Transformer(width, layers, heads)
219
+
220
+ self.ln_post = LayerNorm(width)
221
+ self.proj = nn.Parameter(scale * torch.randn(width, output_dim))
222
+
223
+ def forward(self, x: torch.Tensor):
224
+ x = self.conv1(x) # shape = [*, width, grid, grid]
225
+ x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2]
226
+ x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
227
+ x = torch.cat([self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) # shape = [*, grid ** 2 + 1, width]
228
+ x = x + self.positional_embedding.to(x.dtype)
229
+ x = self.ln_pre(x)
230
+
231
+ x = x.permute(1, 0, 2) # NLD -> LND
232
+ x = self.transformer(x)
233
+ x = x.permute(1, 0, 2) # LND -> NLD
234
+
235
+ x = self.ln_post(x[:, 0, :])
236
+
237
+ if self.proj is not None:
238
+ x = x @ self.proj
239
+
240
+ return x
241
+
242
+
243
+ class CLIP(nn.Module):
244
+ def __init__(self,
245
+ embed_dim: int,
246
+ # vision
247
+ image_resolution: int,
248
+ vision_layers: Union[Tuple[int, int, int, int], int],
249
+ vision_width: int,
250
+ vision_patch_size: int,
251
+ # text
252
+ context_length: int,
253
+ vocab_size: int,
254
+ transformer_width: int,
255
+ transformer_heads: int,
256
+ transformer_layers: int
257
+ ):
258
+ super().__init__()
259
+
260
+ self.context_length = context_length
261
+
262
+ if isinstance(vision_layers, (tuple, list)):
263
+ vision_heads = vision_width * 32 // 64
264
+ self.visual = ModifiedResNet(
265
+ layers=vision_layers,
266
+ output_dim=embed_dim,
267
+ heads=vision_heads,
268
+ input_resolution=image_resolution,
269
+ width=vision_width
270
+ )
271
+ else:
272
+ vision_heads = vision_width // 64
273
+ self.visual = VisionTransformer(
274
+ input_resolution=image_resolution,
275
+ patch_size=vision_patch_size,
276
+ width=vision_width,
277
+ layers=vision_layers,
278
+ heads=vision_heads,
279
+ output_dim=embed_dim
280
+ )
281
+
282
+ self.transformer = Transformer(
283
+ width=transformer_width,
284
+ layers=transformer_layers,
285
+ heads=transformer_heads,
286
+ attn_mask=self.build_attention_mask()
287
+ )
288
+
289
+ self.vocab_size = vocab_size
290
+ self.token_embedding = nn.Embedding(vocab_size, transformer_width)
291
+ self.positional_embedding = nn.Parameter(torch.empty(self.context_length, transformer_width))
292
+ self.ln_final = LayerNorm(transformer_width)
293
+
294
+ self.text_projection = nn.Parameter(torch.empty(transformer_width, embed_dim))
295
+ self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
296
+
297
+ self.initialize_parameters()
298
+
299
+ def initialize_parameters(self):
300
+ nn.init.normal_(self.token_embedding.weight, std=0.02)
301
+ nn.init.normal_(self.positional_embedding, std=0.01)
302
+
303
+ if isinstance(self.visual, ModifiedResNet):
304
+ if self.visual.attnpool is not None:
305
+ std = self.visual.attnpool.c_proj.in_features ** -0.5
306
+ nn.init.normal_(self.visual.attnpool.q_proj.weight, std=std)
307
+ nn.init.normal_(self.visual.attnpool.k_proj.weight, std=std)
308
+ nn.init.normal_(self.visual.attnpool.v_proj.weight, std=std)
309
+ nn.init.normal_(self.visual.attnpool.c_proj.weight, std=std)
310
+
311
+ for resnet_block in [self.visual.layer1, self.visual.layer2, self.visual.layer3, self.visual.layer4]:
312
+ for name, param in resnet_block.named_parameters():
313
+ if name.endswith("bn3.weight"):
314
+ nn.init.zeros_(param)
315
+
316
+ proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5)
317
+ attn_std = self.transformer.width ** -0.5
318
+ fc_std = (2 * self.transformer.width) ** -0.5
319
+ for block in self.transformer.resblocks:
320
+ nn.init.normal_(block.attn.in_proj_weight, std=attn_std)
321
+ nn.init.normal_(block.attn.out_proj.weight, std=proj_std)
322
+ nn.init.normal_(block.mlp.c_fc.weight, std=fc_std)
323
+ nn.init.normal_(block.mlp.c_proj.weight, std=proj_std)
324
+
325
+ if self.text_projection is not None:
326
+ nn.init.normal_(self.text_projection, std=self.transformer.width ** -0.5)
327
+
328
+ def build_attention_mask(self):
329
+ # lazily create causal attention mask, with full attention between the vision tokens
330
+ # pytorch uses additive attention mask; fill with -inf
331
+ mask = torch.empty(self.context_length, self.context_length)
332
+ mask.fill_(float("-inf"))
333
+ mask.triu_(1) # zero out the lower diagonal
334
+ return mask
335
+
336
+ @property
337
+ def dtype(self):
338
+ return self.visual.conv1.weight.dtype
339
+
340
+ def encode_image(self, image):
341
+ return self.visual(image.type(self.dtype))
342
+
343
+ def encode_text(self, text):
344
+ x = self.token_embedding(text).type(self.dtype) # [batch_size, n_ctx, d_model]
345
+
346
+ x = x + self.positional_embedding.type(self.dtype)
347
+ x = x.permute(1, 0, 2) # NLD -> LND
348
+ x = self.transformer(x)
349
+ x = x.permute(1, 0, 2) # LND -> NLD
350
+ x = self.ln_final(x).type(self.dtype)
351
+
352
+ # x.shape = [batch_size, n_ctx, transformer.width]
353
+ # take features from the eot embedding (eot_token is the highest number in each sequence)
354
+ x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection
355
+
356
+ return x
357
+
358
+ def forward(self, image, text):
359
+ image_features = self.encode_image(image)
360
+ text_features = self.encode_text(text)
361
+
362
+ # normalized features
363
+ image_features = image_features / image_features.norm(dim=1, keepdim=True)
364
+ text_features = text_features / text_features.norm(dim=1, keepdim=True)
365
+
366
+ # cosine similarity as logits
367
+ logit_scale = self.logit_scale.exp()
368
+ logits_per_image = logit_scale * image_features @ text_features.t()
369
+ logits_per_text = logits_per_image.t()
370
+
371
+ # shape = [global_batch_size, global_batch_size]
372
+ return logits_per_image, logits_per_text
373
+
374
+
375
+ def convert_weights(model: nn.Module):
376
+ """Convert applicable model parameters to fp16"""
377
+
378
+ def _convert_weights_to_fp16(l):
379
+ if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)):
380
+ l.weight.data = l.weight.data.half()
381
+ if l.bias is not None:
382
+ l.bias.data = l.bias.data.half()
383
+
384
+ if isinstance(l, nn.MultiheadAttention):
385
+ for attr in [*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]], "in_proj_bias", "bias_k", "bias_v"]:
386
+ tensor = getattr(l, attr)
387
+ if tensor is not None:
388
+ tensor.data = tensor.data.half()
389
+
390
+ for name in ["text_projection", "proj"]:
391
+ if hasattr(l, name):
392
+ attr = getattr(l, name)
393
+ if attr is not None:
394
+ attr.data = attr.data.half()
395
+
396
+ model.apply(_convert_weights_to_fp16)
397
+
398
+
399
+ def build_model(state_dict: dict):
400
+ vit = "visual.proj" in state_dict
401
+
402
+ if vit:
403
+ vision_width = state_dict["visual.conv1.weight"].shape[0]
404
+ vision_layers = len([k for k in state_dict.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")])
405
+ vision_patch_size = state_dict["visual.conv1.weight"].shape[-1]
406
+ grid_size = round((state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5)
407
+ image_resolution = vision_patch_size * grid_size
408
+ else:
409
+ counts: list = [len(set(k.split(".")[2] for k in state_dict if k.startswith(f"visual.layer{b}"))) for b in [1, 2, 3, 4]]
410
+ vision_layers = tuple(counts)
411
+ vision_width = state_dict["visual.layer1.0.conv1.weight"].shape[0]
412
+ output_width = round((state_dict["visual.attnpool.positional_embedding"].shape[0] - 1) ** 0.5)
413
+ vision_patch_size = None
414
+ assert output_width ** 2 + 1 == state_dict["visual.attnpool.positional_embedding"].shape[0]
415
+ image_resolution = output_width * 32
416
+
417
+ embed_dim = state_dict["text_projection"].shape[1]
418
+ context_length = state_dict["positional_embedding"].shape[0]
419
+ vocab_size = state_dict["token_embedding.weight"].shape[0]
420
+ transformer_width = state_dict["ln_final.weight"].shape[0]
421
+ transformer_heads = transformer_width // 64
422
+ transformer_layers = len(set(k.split(".")[2] for k in state_dict if k.startswith("transformer.resblocks")))
423
+
424
+ model = CLIP(
425
+ embed_dim,
426
+ image_resolution, vision_layers, vision_width, vision_patch_size,
427
+ context_length, vocab_size, transformer_width, transformer_heads, transformer_layers
428
+ )
429
+
430
+ for key in ["input_resolution", "context_length", "vocab_size"]:
431
+ if key in state_dict:
432
+ del state_dict[key]
433
+
434
+ convert_weights(model)
435
+ model.load_state_dict(state_dict)
436
+ return model.eval()
clip/simple_tokenizer.py ADDED
@@ -0,0 +1,132 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gzip
2
+ import html
3
+ import os
4
+ from functools import lru_cache
5
+
6
+ import ftfy
7
+ import regex as re
8
+
9
+
10
+ @lru_cache()
11
+ def default_bpe():
12
+ return os.path.join(os.path.dirname(os.path.abspath(__file__)), "bpe_simple_vocab_16e6.txt.gz")
13
+
14
+
15
+ @lru_cache()
16
+ def bytes_to_unicode():
17
+ """
18
+ Returns list of utf-8 byte and a corresponding list of unicode strings.
19
+ The reversible bpe codes work on unicode strings.
20
+ This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
21
+ When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
22
+ This is a signficant percentage of your normal, say, 32K bpe vocab.
23
+ To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
24
+ And avoids mapping to whitespace/control characters the bpe code barfs on.
25
+ """
26
+ bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
27
+ cs = bs[:]
28
+ n = 0
29
+ for b in range(2**8):
30
+ if b not in bs:
31
+ bs.append(b)
32
+ cs.append(2**8+n)
33
+ n += 1
34
+ cs = [chr(n) for n in cs]
35
+ return dict(zip(bs, cs))
36
+
37
+
38
+ def get_pairs(word):
39
+ """Return set of symbol pairs in a word.
40
+ Word is represented as tuple of symbols (symbols being variable-length strings).
41
+ """
42
+ pairs = set()
43
+ prev_char = word[0]
44
+ for char in word[1:]:
45
+ pairs.add((prev_char, char))
46
+ prev_char = char
47
+ return pairs
48
+
49
+
50
+ def basic_clean(text):
51
+ text = ftfy.fix_text(text)
52
+ text = html.unescape(html.unescape(text))
53
+ return text.strip()
54
+
55
+
56
+ def whitespace_clean(text):
57
+ text = re.sub(r'\s+', ' ', text)
58
+ text = text.strip()
59
+ return text
60
+
61
+
62
+ class SimpleTokenizer(object):
63
+ def __init__(self, bpe_path: str = default_bpe()):
64
+ self.byte_encoder = bytes_to_unicode()
65
+ self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
66
+ merges = gzip.open(bpe_path).read().decode("utf-8").split('\n')
67
+ merges = merges[1:49152-256-2+1]
68
+ merges = [tuple(merge.split()) for merge in merges]
69
+ vocab = list(bytes_to_unicode().values())
70
+ vocab = vocab + [v+'</w>' for v in vocab]
71
+ for merge in merges:
72
+ vocab.append(''.join(merge))
73
+ vocab.extend(['<|startoftext|>', '<|endoftext|>'])
74
+ self.encoder = dict(zip(vocab, range(len(vocab))))
75
+ self.decoder = {v: k for k, v in self.encoder.items()}
76
+ self.bpe_ranks = dict(zip(merges, range(len(merges))))
77
+ self.cache = {'<|startoftext|>': '<|startoftext|>', '<|endoftext|>': '<|endoftext|>'}
78
+ self.pat = re.compile(r"""<\|startoftext\|>|<\|endoftext\|>|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""", re.IGNORECASE)
79
+
80
+ def bpe(self, token):
81
+ if token in self.cache:
82
+ return self.cache[token]
83
+ word = tuple(token[:-1]) + ( token[-1] + '</w>',)
84
+ pairs = get_pairs(word)
85
+
86
+ if not pairs:
87
+ return token+'</w>'
88
+
89
+ while True:
90
+ bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf')))
91
+ if bigram not in self.bpe_ranks:
92
+ break
93
+ first, second = bigram
94
+ new_word = []
95
+ i = 0
96
+ while i < len(word):
97
+ try:
98
+ j = word.index(first, i)
99
+ new_word.extend(word[i:j])
100
+ i = j
101
+ except:
102
+ new_word.extend(word[i:])
103
+ break
104
+
105
+ if word[i] == first and i < len(word)-1 and word[i+1] == second:
106
+ new_word.append(first+second)
107
+ i += 2
108
+ else:
109
+ new_word.append(word[i])
110
+ i += 1
111
+ new_word = tuple(new_word)
112
+ word = new_word
113
+ if len(word) == 1:
114
+ break
115
+ else:
116
+ pairs = get_pairs(word)
117
+ word = ' '.join(word)
118
+ self.cache[token] = word
119
+ return word
120
+
121
+ def encode(self, text):
122
+ bpe_tokens = []
123
+ text = whitespace_clean(basic_clean(text)).lower()
124
+ for token in re.findall(self.pat, text):
125
+ token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8'))
126
+ bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' '))
127
+ return bpe_tokens
128
+
129
+ def decode(self, tokens):
130
+ text = ''.join([self.decoder[token] for token in tokens])
131
+ text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors="replace").replace('</w>', ' ')
132
+ return text
clip/vitseg.py ADDED
@@ -0,0 +1,286 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ from posixpath import basename, dirname, join
3
+ # import clip
4
+ from clip.model import convert_weights
5
+ import torch
6
+ import json
7
+ from torch import nn
8
+ from torch.nn import functional as nnf
9
+ from torch.nn.modules import activation
10
+ from torch.nn.modules.activation import ReLU
11
+ from torchvision import transforms
12
+
13
+ normalize = transforms.Normalize(mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711))
14
+
15
+ from torchvision.models import ResNet
16
+
17
+
18
+ def process_prompts(conditional, prompt_list, conditional_map):
19
+ # DEPRECATED
20
+
21
+ # randomly sample a synonym
22
+ words = [conditional_map[int(i)] for i in conditional]
23
+ words = [syns[torch.multinomial(torch.ones(len(syns)), 1, replacement=True).item()] for syns in words]
24
+ words = [w.replace('_', ' ') for w in words]
25
+
26
+ if prompt_list is not None:
27
+ prompt_indices = torch.multinomial(torch.ones(len(prompt_list)), len(words), replacement=True)
28
+ prompts = [prompt_list[i] for i in prompt_indices]
29
+ else:
30
+ prompts = ['a photo of {}'] * (len(words))
31
+
32
+ return [promt.format(w) for promt, w in zip(prompts, words)]
33
+
34
+
35
+ class VITDenseBase(nn.Module):
36
+
37
+ def rescaled_pos_emb(self, new_size):
38
+ assert len(new_size) == 2
39
+
40
+ a = self.model.positional_embedding[1:].T.view(1, 768, *self.token_shape)
41
+ b = nnf.interpolate(a, new_size, mode='bicubic', align_corners=False).squeeze(0).view(768, new_size[0]*new_size[1]).T
42
+ return torch.cat([self.model.positional_embedding[:1], b])
43
+
44
+ def visual_forward(self, x_inp, extract_layers=(), skip=False, mask=None):
45
+
46
+ with torch.no_grad():
47
+
48
+ x_inp = nnf.interpolate(x_inp, (384, 384))
49
+
50
+ x = self.model.patch_embed(x_inp)
51
+ cls_token = self.model.cls_token.expand(x.shape[0], -1, -1) # stole cls_tokens impl from Phil Wang, thanks
52
+ if self.model.dist_token is None:
53
+ x = torch.cat((cls_token, x), dim=1)
54
+ else:
55
+ x = torch.cat((cls_token, self.model.dist_token.expand(x.shape[0], -1, -1), x), dim=1)
56
+ x = self.model.pos_drop(x + self.model.pos_embed)
57
+
58
+ activations = []
59
+ for i, block in enumerate(self.model.blocks):
60
+ x = block(x)
61
+
62
+ if i in extract_layers:
63
+ # permute to be compatible with CLIP
64
+ activations += [x.permute(1,0,2)]
65
+
66
+ x = self.model.norm(x)
67
+ x = self.model.head(self.model.pre_logits(x[:, 0]))
68
+
69
+ # again for CLIP compatibility
70
+ # x = x.permute(1, 0, 2)
71
+
72
+ return x, activations, None
73
+
74
+ def sample_prompts(self, words, prompt_list=None):
75
+
76
+ prompt_list = prompt_list if prompt_list is not None else self.prompt_list
77
+
78
+ prompt_indices = torch.multinomial(torch.ones(len(prompt_list)), len(words), replacement=True)
79
+ prompts = [prompt_list[i] for i in prompt_indices]
80
+ return [promt.format(w) for promt, w in zip(prompts, words)]
81
+
82
+ def get_cond_vec(self, conditional, batch_size):
83
+ # compute conditional from a single string
84
+ if conditional is not None and type(conditional) == str:
85
+ cond = self.compute_conditional(conditional)
86
+ cond = cond.repeat(batch_size, 1)
87
+
88
+ # compute conditional from string list/tuple
89
+ elif conditional is not None and type(conditional) in {list, tuple} and type(conditional[0]) == str:
90
+ assert len(conditional) == batch_size
91
+ cond = self.compute_conditional(conditional)
92
+
93
+ # use conditional directly
94
+ elif conditional is not None and type(conditional) == torch.Tensor and conditional.ndim == 2:
95
+ cond = conditional
96
+
97
+ # compute conditional from image
98
+ elif conditional is not None and type(conditional) == torch.Tensor:
99
+ with torch.no_grad():
100
+ cond, _, _ = self.visual_forward(conditional)
101
+ else:
102
+ raise ValueError('invalid conditional')
103
+ return cond
104
+
105
+ def compute_conditional(self, conditional):
106
+ import clip
107
+
108
+ dev = next(self.parameters()).device
109
+
110
+ if type(conditional) in {list, tuple}:
111
+ text_tokens = clip.tokenize(conditional).to(dev)
112
+ cond = self.clip_model.encode_text(text_tokens)
113
+ else:
114
+ if conditional in self.precomputed_prompts:
115
+ cond = self.precomputed_prompts[conditional].float().to(dev)
116
+ else:
117
+ text_tokens = clip.tokenize([conditional]).to(dev)
118
+ cond = self.clip_model.encode_text(text_tokens)[0]
119
+
120
+ return cond
121
+
122
+
123
+ class VITDensePredT(VITDenseBase):
124
+
125
+ def __init__(self, extract_layers=(3, 6, 9), cond_layer=0, reduce_dim=128, n_heads=4, prompt='fixed',
126
+ depth=3, extra_blocks=0, reduce_cond=None, fix_shift=False,
127
+ learn_trans_conv_only=False, refine=None, limit_to_clip_only=False, upsample=False,
128
+ add_calibration=False, process_cond=None, not_pretrained=False):
129
+ super().__init__()
130
+ # device = 'cpu'
131
+
132
+ self.extract_layers = extract_layers
133
+ self.cond_layer = cond_layer
134
+ self.limit_to_clip_only = limit_to_clip_only
135
+ self.process_cond = None
136
+
137
+ if add_calibration:
138
+ self.calibration_conds = 1
139
+
140
+ self.upsample_proj = nn.Conv2d(reduce_dim, 1, kernel_size=1) if upsample else None
141
+
142
+ self.add_activation1 = True
143
+
144
+ import timm
145
+ self.model = timm.create_model('vit_base_patch16_384', pretrained=True)
146
+ self.model.head = nn.Linear(768, 512 if reduce_cond is None else reduce_cond)
147
+
148
+ for p in self.model.parameters():
149
+ p.requires_grad_(False)
150
+
151
+ import clip
152
+ self.clip_model, _ = clip.load('ViT-B/16', device='cpu', jit=False)
153
+ # del self.clip_model.visual
154
+
155
+
156
+ self.token_shape = (14, 14)
157
+
158
+ # conditional
159
+ if reduce_cond is not None:
160
+ self.reduce_cond = nn.Linear(512, reduce_cond)
161
+ for p in self.reduce_cond.parameters():
162
+ p.requires_grad_(False)
163
+ else:
164
+ self.reduce_cond = None
165
+
166
+ # self.film = AVAILABLE_BLOCKS['film'](512, 128)
167
+ self.film_mul = nn.Linear(512 if reduce_cond is None else reduce_cond, reduce_dim)
168
+ self.film_add = nn.Linear(512 if reduce_cond is None else reduce_cond, reduce_dim)
169
+
170
+ # DEPRECATED
171
+ # self.conditional_map = {c['id']: c['synonyms'] for c in json.load(open(cond_map))}
172
+
173
+ assert len(self.extract_layers) == depth
174
+
175
+ self.reduces = nn.ModuleList([nn.Linear(768, reduce_dim) for _ in range(depth)])
176
+ self.blocks = nn.ModuleList([nn.TransformerEncoderLayer(d_model=reduce_dim, nhead=n_heads) for _ in range(len(self.extract_layers))])
177
+ self.extra_blocks = nn.ModuleList([nn.TransformerEncoderLayer(d_model=reduce_dim, nhead=n_heads) for _ in range(extra_blocks)])
178
+
179
+ trans_conv_ks = (16, 16)
180
+ self.trans_conv = nn.ConvTranspose2d(reduce_dim, 1, trans_conv_ks, stride=trans_conv_ks)
181
+
182
+ # refinement and trans conv
183
+
184
+ if learn_trans_conv_only:
185
+ for p in self.parameters():
186
+ p.requires_grad_(False)
187
+
188
+ for p in self.trans_conv.parameters():
189
+ p.requires_grad_(True)
190
+
191
+ if prompt == 'fixed':
192
+ self.prompt_list = ['a photo of a {}.']
193
+ elif prompt == 'shuffle':
194
+ self.prompt_list = ['a photo of a {}.', 'a photograph of a {}.', 'an image of a {}.', '{}.']
195
+ elif prompt == 'shuffle+':
196
+ self.prompt_list = ['a photo of a {}.', 'a photograph of a {}.', 'an image of a {}.', '{}.',
197
+ 'a cropped photo of a {}.', 'a good photo of a {}.', 'a photo of one {}.',
198
+ 'a bad photo of a {}.', 'a photo of the {}.']
199
+ elif prompt == 'shuffle_clip':
200
+ from models.clip_prompts import imagenet_templates
201
+ self.prompt_list = imagenet_templates
202
+
203
+ if process_cond is not None:
204
+ if process_cond == 'clamp' or process_cond[0] == 'clamp':
205
+
206
+ val = process_cond[1] if type(process_cond) in {list, tuple} else 0.2
207
+
208
+ def clamp_vec(x):
209
+ return torch.clamp(x, -val, val)
210
+
211
+ self.process_cond = clamp_vec
212
+
213
+ elif process_cond.endswith('.pth'):
214
+
215
+ shift = torch.load(process_cond)
216
+ def add_shift(x):
217
+ return x + shift.to(x.device)
218
+
219
+ self.process_cond = add_shift
220
+
221
+ import pickle
222
+ precomp = pickle.load(open('precomputed_prompt_vectors.pickle', 'rb'))
223
+ self.precomputed_prompts = {k: torch.from_numpy(v) for k, v in precomp.items()}
224
+
225
+
226
+ def forward(self, inp_image, conditional=None, return_features=False, mask=None):
227
+
228
+ assert type(return_features) == bool
229
+
230
+ # inp_image = inp_image.to(self.model.positional_embedding.device)
231
+
232
+ if mask is not None:
233
+ raise ValueError('mask not supported')
234
+
235
+ # x_inp = normalize(inp_image)
236
+ x_inp = inp_image
237
+
238
+ bs, dev = inp_image.shape[0], x_inp.device
239
+
240
+ inp_image_size = inp_image.shape[2:]
241
+
242
+ cond = self.get_cond_vec(conditional, bs)
243
+
244
+ visual_q, activations, _ = self.visual_forward(x_inp, extract_layers=[0] + list(self.extract_layers))
245
+
246
+ activation1 = activations[0]
247
+ activations = activations[1:]
248
+
249
+ a = None
250
+ for i, (activation, block, reduce) in enumerate(zip(activations[::-1], self.blocks, self.reduces)):
251
+
252
+ if a is not None:
253
+ a = reduce(activation) + a
254
+ else:
255
+ a = reduce(activation)
256
+
257
+ if i == self.cond_layer:
258
+ if self.reduce_cond is not None:
259
+ cond = self.reduce_cond(cond)
260
+
261
+ a = self.film_mul(cond) * a + self.film_add(cond)
262
+
263
+ a = block(a)
264
+
265
+ for block in self.extra_blocks:
266
+ a = a + block(a)
267
+
268
+ a = a[1:].permute(1, 2, 0) # rm cls token and -> BS, Feats, Tokens
269
+
270
+ size = int(math.sqrt(a.shape[2]))
271
+
272
+ a = a.view(bs, a.shape[1], size, size)
273
+
274
+ if self.trans_conv is not None:
275
+ a = self.trans_conv(a)
276
+
277
+ if self.upsample_proj is not None:
278
+ a = self.upsample_proj(a)
279
+ a = nnf.interpolate(a, x_inp.shape[2:], mode='bilinear')
280
+
281
+ a = nnf.interpolate(a, inp_image_size)
282
+
283
+ if return_features:
284
+ return a, visual_q, cond, [activation1] + activations
285
+ else:
286
+ return a,
docs/faceselection.png ADDED
docs/finaloutput.png ADDED

Git LFS Details

  • SHA256: 1b6883bacac4a858a44fa4108e3f11e0ebbbc34bb0393aac87a1916da76aba44
  • Pointer size: 132 Bytes
  • Size of remote file: 1.42 MB
docs/kickboxing.jpg ADDED
docs/musk.jpg ADDED
docs/screenshot.png ADDED
installer/installer.py ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import glob
3
+ import os
4
+ import shutil
5
+ import site
6
+ import subprocess
7
+ import sys
8
+
9
+
10
+ script_dir = os.getcwd()
11
+
12
+
13
+ def run_cmd(cmd, capture_output=False, env=None):
14
+ # Run shell commands
15
+ return subprocess.run(cmd, shell=True, capture_output=capture_output, env=env)
16
+
17
+
18
+ def check_env():
19
+ # If we have access to conda, we are probably in an environment
20
+ conda_not_exist = run_cmd("conda", capture_output=True).returncode
21
+ if conda_not_exist:
22
+ print("Conda is not installed. Exiting...")
23
+ sys.exit()
24
+
25
+ # Ensure this is a new environment and not the base environment
26
+ if os.environ["CONDA_DEFAULT_ENV"] == "base":
27
+ print("Create an environment for this project and activate it. Exiting...")
28
+ sys.exit()
29
+
30
+
31
+ def install_dependencies():
32
+ # Install Git and clone repo
33
+ run_cmd("conda install -y -k git")
34
+ run_cmd("git clone https://github.com/C0untFloyd/roop-unleashed.git")
35
+
36
+ # Install the webui dependencies
37
+ update_dependencies()
38
+
39
+
40
+ def update_dependencies():
41
+ global MY_PATH
42
+
43
+ os.chdir(MY_PATH)
44
+ # do a hard reset for to update even if there are local changes
45
+ run_cmd("git fetch --all")
46
+ run_cmd("git reset --hard origin/main")
47
+ run_cmd("git pull")
48
+ # Installs/Updates dependencies from all requirements.txt
49
+ run_cmd("python -m pip install -r requirements.txt")
50
+
51
+
52
+ def start_app():
53
+ global MY_PATH
54
+
55
+ os.chdir(MY_PATH)
56
+ # forward commandline arguments
57
+ sys.argv.pop(0)
58
+ args = ' '.join(sys.argv)
59
+ print("Launching App")
60
+ run_cmd(f'python run.py {args}')
61
+
62
+
63
+ if __name__ == "__main__":
64
+ global MY_PATH
65
+
66
+ MY_PATH = "roop-unleashed"
67
+
68
+
69
+ # Verifies we are in a conda environment
70
+ check_env()
71
+
72
+ # If webui has already been installed, skip and run
73
+ if not os.path.exists(MY_PATH):
74
+ install_dependencies()
75
+ else:
76
+ # moved update from batch to here, because of batch limitations
77
+ updatechoice = input("Check for Updates? [y/n]").lower()
78
+ if updatechoice == "y":
79
+ update_dependencies()
80
+
81
+ # Run the model with webui
82
+ os.chdir(script_dir)
83
+ start_app()
installer/windows_run.bat ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ @echo off
2
+ REM Please set the following commandline arguments to your prefered settings
3
+ set COMMANDLINE_ARGS=--execution-provider cuda --frame-processor face_swapper face_enhancer --video-encoder libvpx-vp9
4
+
5
+ cd /D "%~dp0"
6
+
7
+ echo "%CD%"| findstr /C:" " >nul && echo This script relies on Miniconda which can not be silently installed under a path with spaces. && goto end
8
+
9
+ set PATH=%PATH%;%SystemRoot%\system32
10
+
11
+ @rem config
12
+ set INSTALL_DIR=%cd%\installer_files
13
+ set CONDA_ROOT_PREFIX=%cd%\installer_files\conda
14
+ set INSTALL_ENV_DIR=%cd%\installer_files\env
15
+ set MINICONDA_DOWNLOAD_URL=https://repo.anaconda.com/miniconda/Miniconda3-latest-Windows-x86_64.exe
16
+ set FFMPEG_DOWNLOAD_URL=https://github.com/GyanD/codexffmpeg/releases/download/2023-06-21-git-1bcb8a7338/ffmpeg-2023-06-21-git-1bcb8a7338-essentials_build.zip
17
+ set INSTALL_FFMPEG_DIR=%cd%\installer_files\ffmpeg
18
+ set conda_exists=F
19
+
20
+ @rem figure out whether git and conda needs to be installed
21
+ call "%CONDA_ROOT_PREFIX%\_conda.exe" --version >nul 2>&1
22
+ if "%ERRORLEVEL%" EQU "0" set conda_exists=T
23
+
24
+ @rem (if necessary) install git and conda into a contained environment
25
+ @rem download conda
26
+ if "%conda_exists%" == "F" (
27
+ echo Downloading Miniconda from %MINICONDA_DOWNLOAD_URL% to %INSTALL_DIR%\miniconda_installer.exe
28
+
29
+ mkdir "%INSTALL_DIR%"
30
+ call curl -Lk "%MINICONDA_DOWNLOAD_URL%" > "%INSTALL_DIR%\miniconda_installer.exe" || ( echo. && echo Miniconda failed to download. && goto end )
31
+
32
+ echo Installing Miniconda to %CONDA_ROOT_PREFIX%
33
+ start /wait "" "%INSTALL_DIR%\miniconda_installer.exe" /InstallationType=JustMe /NoShortcuts=1 /AddToPath=0 /RegisterPython=0 /NoRegistry=1 /S /D=%CONDA_ROOT_PREFIX%
34
+
35
+ @rem test the conda binary
36
+ echo Miniconda version:
37
+ call "%CONDA_ROOT_PREFIX%\_conda.exe" --version || ( echo. && echo Miniconda not found. && goto end )
38
+ )
39
+
40
+ @rem create the installer env
41
+ if not exist "%INSTALL_ENV_DIR%" (
42
+ echo Packages to install: %PACKAGES_TO_INSTALL%
43
+ call "%CONDA_ROOT_PREFIX%\_conda.exe" create --no-shortcuts -y -k --prefix "%INSTALL_ENV_DIR%" python=3.10 || ( echo. && echo Conda environment creation failed. && goto end )
44
+ )
45
+
46
+ if not exist "%INSTALL_FFMPEG_DIR%" (
47
+ echo Downloading ffmpeg from %FFMPEG_DOWNLOAD_URL% to %INSTALL_DIR%
48
+ call curl -Lk "%FFMPEG_DOWNLOAD_URL%" > "%INSTALL_DIR%\ffmpeg.zip" || ( echo. && echo ffmpeg failed to download. && goto end )
49
+ call powershell -command "Expand-Archive -Force '%INSTALL_DIR%\ffmpeg.zip' '%INSTALL_DIR%\'"
50
+
51
+ cd "installer_files"
52
+ setlocal EnableExtensions EnableDelayedExpansion
53
+
54
+ for /f "tokens=*" %%f in ('dir /s /b /ad "ffmpeg*"') do (
55
+ ren "%%f" "ffmpeg"
56
+ )
57
+ endlocal
58
+ setx PATH "%INSTALL_FFMPEG_DIR%\bin\;%PATH%"
59
+ echo To use videos, you need to restart roop after this installation.
60
+ cd ..
61
+ )
62
+
63
+ @rem check if conda environment was actually created
64
+ if not exist "%INSTALL_ENV_DIR%\python.exe" ( echo. && echo ERROR: Conda environment is empty. && goto end )
65
+
66
+ @rem activate installer env
67
+ call "%CONDA_ROOT_PREFIX%\condabin\conda.bat" activate "%INSTALL_ENV_DIR%" || ( echo. && echo Miniconda hook not found. && goto end )
68
+
69
+ @rem setup installer env
70
+ echo Launching roop unleashed - please edit windows_run.bat to customize commandline arguments
71
+ call python installer.py %COMMANDLINE_ARGS%
72
+
73
+ echo.
74
+ echo Done!
75
+
76
+ :end
77
+ pause
78
+
79
+
80
+
jaa.py ADDED
@@ -0,0 +1,355 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Jaa.py Plugin Framework
3
+ Author: Janvarev Vladislav
4
+
5
+ Jaa.py - minimalistic one-file plugin framework with no dependencies.
6
+ Main functions:
7
+ - run all plugins files from "plugins" folder, base on filename
8
+ - save each plugin options in "options" folder in JSON text files for further editing
9
+
10
+ - Plugins
11
+ must located in plugins/ folder
12
+ must have "start(core)" function, that returns manifest dict
13
+ manifest must contain keys "name" and "version"
14
+ can contain "default_options"
15
+ - if contain - options will be saved in "options" folder and reload instead next time
16
+ - if contain - "start_with_options(core,manifest)" function will run with manifest with "options" key
17
+ manifest will be processed in "process_plugin_manifest" function if you override it
18
+
19
+ - Options (for plugins)
20
+ are saved under "options" folder in JSON format
21
+ created at first run plugin with "default_options"
22
+ updated when plugin change "version"
23
+
24
+ - Example usage:
25
+ class VoiceAssCore(JaaCore): # class must override JaaCore
26
+ def __init__(self):
27
+ JaaCore.__init__(self,__file__)
28
+ ...
29
+
30
+ main = VoiceAssCore()
31
+ main.init_plugins(["core"]) # 1 param - first plugins to be initialized
32
+ # Good if you need some "core" options/plugin to be loaded before others
33
+ # not necessary starts with "plugin_" prefix
34
+
35
+ also can be run like
36
+
37
+ main.init_plugins()
38
+
39
+ - Requirements
40
+ Python 3.5+ (due to dict mix in final_options calc), can be relaxed
41
+ """
42
+
43
+ import os
44
+ import traceback
45
+ import json
46
+
47
+ # here we trying to use termcolor to highlight plugin info and errors during load
48
+ try:
49
+ from termcolor import cprint
50
+ except Exception as e:
51
+ # not found? making a stub!
52
+ def cprint(p,color=None):
53
+ if color == None:
54
+ print(p)
55
+ else:
56
+ print(str(color).upper(),p)
57
+
58
+ version = "2.2.0"
59
+
60
+ class JaaCore:
61
+ verbose = False
62
+
63
+ def __init__(self,root_file = __file__):
64
+ self.jaaPluginPrefix = "plugin_"
65
+ self.jaaVersion = version
66
+ self.jaaRootFolder = os.path.dirname(root_file)
67
+ self.jaaOptionsPath = self.jaaRootFolder+os.path.sep+"plugin_options"
68
+ self.jaaShowTracebackOnPluginErrors = False
69
+ if self.verbose:
70
+ cprint("JAA.PY v{0} class created!".format(version),"blue")
71
+
72
+ # ------------- plugins -----------------
73
+ def init_plugins(self, list_first_plugins = []):
74
+ self.plugin_manifests = {}
75
+
76
+ # 1. run first plugins first!
77
+ for modname in list_first_plugins:
78
+ self.init_plugin(modname)
79
+
80
+ # 2. run all plugins from plugins folder
81
+ from os import listdir
82
+ from os.path import isfile, join
83
+ pluginpath = self.jaaRootFolder+"/plugins"
84
+ files = [f for f in listdir(pluginpath) if isfile(join(pluginpath, f))]
85
+
86
+ for fil in files:
87
+ # print fil[:-3]
88
+ if fil.startswith(self.jaaPluginPrefix) and fil.endswith(".py"):
89
+ modfile = fil[:-3]
90
+ self.init_plugin(modfile)
91
+
92
+
93
+
94
+ def init_plugin(self,modname):
95
+ # import
96
+ try:
97
+ mod = self.import_plugin("plugins."+modname)
98
+ except Exception as e:
99
+ self.print_error("JAA PLUGIN ERROR: {0} error on load: {1}".format(modname, str(e)))
100
+ return False
101
+
102
+ # run start function
103
+ try:
104
+ res = mod.start(self)
105
+ except Exception as e:
106
+ self.print_error("JAA PLUGIN ERROR: {0} error on start: {1}".format(modname, str(e)))
107
+ return False
108
+
109
+ # if plugin has an options
110
+ if "default_options" in res:
111
+ try:
112
+ # saved options try to read
113
+ saved_options = {}
114
+ try:
115
+ with open(self.jaaOptionsPath+'/'+modname+'.json', 'r', encoding="utf-8") as f:
116
+ s = f.read()
117
+ saved_options = json.loads(s)
118
+ #print("Saved options", saved_options)
119
+ except Exception as e:
120
+ pass
121
+
122
+ res["default_options"]["v"] = res["version"]
123
+
124
+
125
+ # only string needs Python 3.5
126
+ final_options = {**res["default_options"], **saved_options}
127
+
128
+ # if no option found or version is differ from mod version
129
+ if len(saved_options) == 0 or saved_options["v"] != res["version"]:
130
+ final_options["v"] = res["version"]
131
+ self.save_plugin_options(modname,final_options)
132
+
133
+ res["options"] = final_options
134
+
135
+ try:
136
+ res2 = mod.start_with_options(self,res)
137
+ if res2 != None:
138
+ res = res2
139
+ except Exception as e:
140
+ self.print_error("JAA PLUGIN ERROR: {0} error on start_with_options processing: {1}".format(modname, str(e)))
141
+ return False
142
+
143
+ except Exception as e:
144
+ self.print_error("JAA PLUGIN ERROR: {0} error on options processing: {1}".format(modname, str(e)))
145
+ return False
146
+
147
+
148
+ # processing plugin manifest
149
+ try:
150
+ # set up name and version
151
+ plugin_name = res["name"]
152
+ plugin_version = res["version"]
153
+
154
+
155
+ self.process_plugin_manifest(modname,res)
156
+
157
+ except Exception as e:
158
+ print("JAA PLUGIN ERROR: {0} error on process startup options: {1}".format(modname, str(e)))
159
+ return False
160
+
161
+ self.plugin_manifests[modname] = res
162
+
163
+ self.on_succ_plugin_start(modname,plugin_name,plugin_version)
164
+ return True
165
+
166
+ def on_succ_plugin_start(self, modname, plugin_name, plugin_version):
167
+ if self.verbose:
168
+ cprint("JAA PLUGIN: {1} {2} ({0}) started!".format(modname, plugin_name, plugin_version))
169
+
170
+ def print_error(self,p):
171
+ cprint(p,"red")
172
+ if self.jaaShowTracebackOnPluginErrors:
173
+ traceback.print_exc()
174
+
175
+ def import_plugin(self, module_name):
176
+ import sys
177
+
178
+ __import__(module_name)
179
+
180
+ if module_name in sys.modules:
181
+ return sys.modules[module_name]
182
+ return None
183
+
184
+ def save_plugin_options(self,modname,options):
185
+ # check folder exists
186
+ if not os.path.exists(self.jaaOptionsPath):
187
+ os.makedirs(self.jaaOptionsPath)
188
+
189
+ str_options = json.dumps(options, sort_keys=True, indent=4, ensure_ascii=False)
190
+ with open(self.jaaOptionsPath+'/'+modname+'.json', 'w', encoding="utf-8") as f:
191
+ f.write(str_options)
192
+ f.close()
193
+
194
+ # process manifest must be overrided in inherit class
195
+ def process_plugin_manifest(self,modname,manifest):
196
+ print("JAA PLUGIN: {0} manifest dummy procession (override 'process_plugin_manifest' function)".format(modname))
197
+ return
198
+
199
+ def plugin_manifest(self,pluginname):
200
+ if pluginname in self.plugin_manifests:
201
+ return self.plugin_manifests[pluginname]
202
+ return {}
203
+
204
+ def plugin_options(self,pluginname):
205
+ manifest = self.plugin_manifest(pluginname)
206
+ if "options" in manifest:
207
+ return manifest["options"]
208
+ return None
209
+
210
+ # ------------ gradio stuff --------------
211
+ def gradio_save(self,pluginname):
212
+ print("Saving options for {0}!".format(pluginname))
213
+ self.save_plugin_options(pluginname,self.plugin_options(pluginname))
214
+
215
+ def gradio_upd(self, pluginname, option, val):
216
+ options = self.plugin_options(pluginname)
217
+
218
+ # special case
219
+ if isinstance(options[option], (list, dict)) and isinstance(val, str):
220
+ import json
221
+ try:
222
+ options[option] = json.loads(val)
223
+ except Exception as e:
224
+ print(e)
225
+ pass
226
+ else:
227
+ options[option] = val
228
+ print(option,val,options)
229
+
230
+ def gradio_render_settings_interface(self, title:str="Settings manager", required_fields_to_show_plugin:list=["default_options"]):
231
+ import gradio as gr
232
+
233
+ with gr.Blocks() as gr_interface:
234
+ gr.Markdown("# {0}".format(title))
235
+ for pluginname in self.plugin_manifests:
236
+ manifest = self.plugin_manifests[pluginname]
237
+
238
+ # calculate if we show plugin
239
+ is_show_plugin = False
240
+ if len(required_fields_to_show_plugin) == 0:
241
+ is_show_plugin = True
242
+ else:
243
+ for k in required_fields_to_show_plugin:
244
+ if manifest.get(k) is not None:
245
+ is_show_plugin = True
246
+
247
+ if is_show_plugin:
248
+ with gr.Tab(pluginname):
249
+ gr.Markdown("## {0} v{1}".format(manifest["name"],manifest["version"]))
250
+ if manifest.get("description") is not None:
251
+ gr.Markdown(manifest.get("description"))
252
+
253
+ if manifest.get("url") is not None:
254
+ gr.Markdown("**URL:** [{0}]({0})".format(manifest.get("url")))
255
+
256
+
257
+ if "options" in manifest:
258
+ options = manifest["options"]
259
+ if len(options) > 1: # not only v
260
+ text_button = gr.Button("Save options".format(pluginname))
261
+ #options_int_list = []
262
+ for option in options:
263
+
264
+ #gr.Label(label=option)
265
+ if option != "v":
266
+ val = options[option]
267
+ label = option
268
+
269
+ if manifest.get("options_label") is not None:
270
+ if manifest.get("options_label").get(option) is not None:
271
+ label = option+": "+manifest.get("options_label").get(option)
272
+
273
+
274
+ if isinstance(val, (bool, )):
275
+ gr_elem = gr.Checkbox(value=val,label=label)
276
+ elif isinstance(val, (dict,list)):
277
+ import json
278
+ gr_elem = gr.Textbox(value=json.dumps(val,ensure_ascii=False), label=label)
279
+ else:
280
+ gr_elem = gr.Textbox(value=val, label=label)
281
+
282
+ def handler(x,pluginname=pluginname,option=option):
283
+ self.gradio_upd(pluginname, option, x)
284
+
285
+ gr_elem.change(handler, gr_elem, None)
286
+
287
+ def handler_save(pluginname=pluginname):
288
+ self.gradio_save(pluginname)
289
+
290
+ text_button.click(handler_save,inputs=None,outputs=None)
291
+ else:
292
+ gr.Markdown("_No options for this plugin_")
293
+
294
+ return gr_interface
295
+
296
+
297
+ def load_options(options_file=None,py_file=None,default_options={}):
298
+ # 1. calculating options filename
299
+ if options_file == None:
300
+ if py_file == None:
301
+ raise Exception('JAA: Options or PY file is not defined, cant calc options filename')
302
+ else:
303
+ options_file = py_file[:-3]+'.json'
304
+
305
+ # 2. try to read saved options
306
+ saved_options = {}
307
+ try:
308
+ with open(options_file, 'r', encoding="utf-8") as f:
309
+ s = f.read()
310
+ saved_options = json.loads(s)
311
+ #print("Saved options", saved_options)
312
+ except Exception as e:
313
+ pass
314
+
315
+ # 3. calculating final options
316
+
317
+ # only string needs Python 3.5
318
+ final_options = {**default_options, **saved_options}
319
+
320
+ # 4. calculating hash from def options to check - is file rewrite needed?
321
+ import hashlib
322
+ hash = hashlib.md5((json.dumps(default_options, sort_keys=True)).encode('utf-8')).hexdigest()
323
+
324
+ # 5. if no option file found or hash was from other default options
325
+ if len(saved_options) == 0 or not ("hash" in saved_options.keys()) or saved_options["hash"] != hash:
326
+ final_options["hash"] = hash
327
+ #self.save_plugin_options(modname,final_options)
328
+
329
+ # saving in file
330
+ str_options = json.dumps(final_options, sort_keys=True, indent=4, ensure_ascii=False)
331
+ with open(options_file, 'w', encoding="utf-8") as f:
332
+ f.write(str_options)
333
+ f.close()
334
+
335
+ return final_options
336
+
337
+ """
338
+ The MIT License (MIT)
339
+ Copyright (c) 2021 Janvarev Vladislav
340
+
341
+ Permission is hereby granted, free of charge, to any person obtaining a copy
342
+ of this software and associated documentation files (the “Software”), to deal
343
+ in the Software without restriction, including without limitation the rights to use,
344
+ copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software,
345
+ and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
346
+
347
+ The above copyright notice and this permission notice shall be included in all copies or
348
+ substantial portions of the Software.
349
+
350
+ THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
351
+ INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
352
+ PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE
353
+ FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
354
+ ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
355
+ """
models/CLIP/rd64-uni-refined.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a4956f9a7978a75630b08c9d6ec075b7c51cf43b4751b686e3a011d4012ddc9d
3
+ size 4720707
models/CodeFormer/codeformer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1009e537e0c2a07d4cabce6355f53cb66767cd4b4297ec7a4a64ca4b8a5684b7
3
+ size 376637898
models/CodeFormer/facelib/detection_Resnet50_Final.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6d1de9c2944f2ccddca5f5e010ea5ae64a39845a86311af6fdf30841b0a5a16d
3
+ size 109497761
models/CodeFormer/facelib/parsing_parsenet.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3d558d8d0e42c20224f13cf5a29c79eba2d59913419f945545d8cf7b72920de2
3
+ size 85331193
models/CodeFormer/realesrgan/RealESRGAN_x2plus.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:49fafd45f8fd7aa8d31ab2a22d14d91b536c34494a5cfe31eb5d89c2fa266abb
3
+ size 67061725
models/DMDNet.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:70daeb4b1fd10f241043b587d892a941f2651d7322db02f06ff64b166537f65c
3
+ size 603684323
models/GFPGANv1.4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e2cd4703ab14f4d01fd1383a8a8b266f9a5833dacee8e6a79d3bf21a1b6be5ad
3
+ size 348632874
models/inswapper_128.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e4a3f08c753cb72d04e10aa0f7dbe3deebbf39567d4ead6dce08e98aa49e16af
3
+ size 554253681
mynewshinyroop/.gitignore ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ # created by virtualenv automatically
2
+ *
mynewshinyroop/Lib/site-packages/_distutils_hack/__init__.py ADDED
@@ -0,0 +1,227 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # don't import any costly modules
2
+ import sys
3
+ import os
4
+
5
+
6
+ is_pypy = '__pypy__' in sys.builtin_module_names
7
+
8
+
9
+ def warn_distutils_present():
10
+ if 'distutils' not in sys.modules:
11
+ return
12
+ if is_pypy and sys.version_info < (3, 7):
13
+ # PyPy for 3.6 unconditionally imports distutils, so bypass the warning
14
+ # https://foss.heptapod.net/pypy/pypy/-/blob/be829135bc0d758997b3566062999ee8b23872b4/lib-python/3/site.py#L250
15
+ return
16
+ import warnings
17
+
18
+ warnings.warn(
19
+ "Distutils was imported before Setuptools, but importing Setuptools "
20
+ "also replaces the `distutils` module in `sys.modules`. This may lead "
21
+ "to undesirable behaviors or errors. To avoid these issues, avoid "
22
+ "using distutils directly, ensure that setuptools is installed in the "
23
+ "traditional way (e.g. not an editable install), and/or make sure "
24
+ "that setuptools is always imported before distutils."
25
+ )
26
+
27
+
28
+ def clear_distutils():
29
+ if 'distutils' not in sys.modules:
30
+ return
31
+ import warnings
32
+
33
+ warnings.warn("Setuptools is replacing distutils.")
34
+ mods = [
35
+ name
36
+ for name in sys.modules
37
+ if name == "distutils" or name.startswith("distutils.")
38
+ ]
39
+ for name in mods:
40
+ del sys.modules[name]
41
+
42
+
43
+ def enabled():
44
+ """
45
+ Allow selection of distutils by environment variable.
46
+ """
47
+ which = os.environ.get('SETUPTOOLS_USE_DISTUTILS', 'local')
48
+ return which == 'local'
49
+
50
+
51
+ def ensure_local_distutils():
52
+ import importlib
53
+
54
+ clear_distutils()
55
+
56
+ # With the DistutilsMetaFinder in place,
57
+ # perform an import to cause distutils to be
58
+ # loaded from setuptools._distutils. Ref #2906.
59
+ with shim():
60
+ importlib.import_module('distutils')
61
+
62
+ # check that submodules load as expected
63
+ core = importlib.import_module('distutils.core')
64
+ assert '_distutils' in core.__file__, core.__file__
65
+ assert 'setuptools._distutils.log' not in sys.modules
66
+
67
+
68
+ def do_override():
69
+ """
70
+ Ensure that the local copy of distutils is preferred over stdlib.
71
+
72
+ See https://github.com/pypa/setuptools/issues/417#issuecomment-392298401
73
+ for more motivation.
74
+ """
75
+ if enabled():
76
+ warn_distutils_present()
77
+ ensure_local_distutils()
78
+
79
+
80
+ class _TrivialRe:
81
+ def __init__(self, *patterns):
82
+ self._patterns = patterns
83
+
84
+ def match(self, string):
85
+ return all(pat in string for pat in self._patterns)
86
+
87
+
88
+ class DistutilsMetaFinder:
89
+ def find_spec(self, fullname, path, target=None):
90
+ # optimization: only consider top level modules and those
91
+ # found in the CPython test suite.
92
+ if path is not None and not fullname.startswith('test.'):
93
+ return
94
+
95
+ method_name = 'spec_for_{fullname}'.format(**locals())
96
+ method = getattr(self, method_name, lambda: None)
97
+ return method()
98
+
99
+ def spec_for_distutils(self):
100
+ if self.is_cpython():
101
+ return
102
+
103
+ import importlib
104
+ import importlib.abc
105
+ import importlib.util
106
+
107
+ try:
108
+ mod = importlib.import_module('setuptools._distutils')
109
+ except Exception:
110
+ # There are a couple of cases where setuptools._distutils
111
+ # may not be present:
112
+ # - An older Setuptools without a local distutils is
113
+ # taking precedence. Ref #2957.
114
+ # - Path manipulation during sitecustomize removes
115
+ # setuptools from the path but only after the hook
116
+ # has been loaded. Ref #2980.
117
+ # In either case, fall back to stdlib behavior.
118
+ return
119
+
120
+ class DistutilsLoader(importlib.abc.Loader):
121
+ def create_module(self, spec):
122
+ mod.__name__ = 'distutils'
123
+ return mod
124
+
125
+ def exec_module(self, module):
126
+ pass
127
+
128
+ return importlib.util.spec_from_loader(
129
+ 'distutils', DistutilsLoader(), origin=mod.__file__
130
+ )
131
+
132
+ @staticmethod
133
+ def is_cpython():
134
+ """
135
+ Suppress supplying distutils for CPython (build and tests).
136
+ Ref #2965 and #3007.
137
+ """
138
+ return os.path.isfile('pybuilddir.txt')
139
+
140
+ def spec_for_pip(self):
141
+ """
142
+ Ensure stdlib distutils when running under pip.
143
+ See pypa/pip#8761 for rationale.
144
+ """
145
+ if sys.version_info >= (3, 12) or self.pip_imported_during_build():
146
+ return
147
+ clear_distutils()
148
+ self.spec_for_distutils = lambda: None
149
+
150
+ @classmethod
151
+ def pip_imported_during_build(cls):
152
+ """
153
+ Detect if pip is being imported in a build script. Ref #2355.
154
+ """
155
+ import traceback
156
+
157
+ return any(
158
+ cls.frame_file_is_setup(frame) for frame, line in traceback.walk_stack(None)
159
+ )
160
+
161
+ @staticmethod
162
+ def frame_file_is_setup(frame):
163
+ """
164
+ Return True if the indicated frame suggests a setup.py file.
165
+ """
166
+ # some frames may not have __file__ (#2940)
167
+ return frame.f_globals.get('__file__', '').endswith('setup.py')
168
+
169
+ def spec_for_sensitive_tests(self):
170
+ """
171
+ Ensure stdlib distutils when running select tests under CPython.
172
+
173
+ python/cpython#91169
174
+ """
175
+ clear_distutils()
176
+ self.spec_for_distutils = lambda: None
177
+
178
+ sensitive_tests = (
179
+ [
180
+ 'test.test_distutils',
181
+ 'test.test_peg_generator',
182
+ 'test.test_importlib',
183
+ ]
184
+ if sys.version_info < (3, 10)
185
+ else [
186
+ 'test.test_distutils',
187
+ ]
188
+ )
189
+
190
+
191
+ for name in DistutilsMetaFinder.sensitive_tests:
192
+ setattr(
193
+ DistutilsMetaFinder,
194
+ f'spec_for_{name}',
195
+ DistutilsMetaFinder.spec_for_sensitive_tests,
196
+ )
197
+
198
+
199
+ DISTUTILS_FINDER = DistutilsMetaFinder()
200
+
201
+
202
+ def add_shim():
203
+ DISTUTILS_FINDER in sys.meta_path or insert_shim()
204
+
205
+
206
+ class shim:
207
+ def __enter__(self):
208
+ insert_shim()
209
+
210
+ def __exit__(self, exc, value, tb):
211
+ _remove_shim()
212
+
213
+
214
+ def insert_shim():
215
+ sys.meta_path.insert(0, DISTUTILS_FINDER)
216
+
217
+
218
+ def _remove_shim():
219
+ try:
220
+ sys.meta_path.remove(DISTUTILS_FINDER)
221
+ except ValueError:
222
+ pass
223
+
224
+
225
+ if sys.version_info < (3, 12):
226
+ # DistutilsMetaFinder can only be disabled in Python < 3.12 (PEP 632)
227
+ remove_shim = _remove_shim
mynewshinyroop/Lib/site-packages/_distutils_hack/override.py ADDED
@@ -0,0 +1 @@
 
 
1
+ __import__('_distutils_hack').do_override()