pksx01 commited on
Commit
b8222fb
1 Parent(s): 0793154

add chatbot functionality

Browse files
Files changed (1) hide show
  1. app.py +26 -8
app.py CHANGED
@@ -9,6 +9,8 @@ from langchain.prompts import PromptTemplate
9
  from langchain.chains.question_answering import load_qa_chain
10
  import streamlit as st
11
 
 
 
12
  confluence_api_key = os.environ["CONFLUENCE_API_KEY"]
13
 
14
  if "GOOGLE_API_KEY" not in os.environ:
@@ -34,27 +36,43 @@ llm = ChatGoogleGenerativeAI(model="gemini-1.5-flash-latest")
34
  vector_store = FAISS.from_texts(chunks, embedding=embeddings)
35
  vector_store.save_local("faiss_index")
36
 
37
- def get_response(query):
 
 
38
  prompt_template = """
39
- Answer the question as detailed as possible from the provided context, make sure to provide all the details, if the answer is not in
40
- provided context just say, "answer is not available in the context", don't provide the wrong answer\n\n
 
41
  Context:\n {context}?\n
42
  Question: \n{question}\n
43
 
44
  Answer:
45
  """
46
- prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
47
  chain = load_qa_chain(llm, chain_type="stuff", prompt=prompt)
48
  db = FAISS.load_local("faiss_index", embeddings, allow_dangerous_deserialization=True)
49
  docs = db.similarity_search(query)
50
- response = chain({"input_documents" : docs, "question": query}, return_only_outputs = True)
51
  return response["output_text"]
52
 
53
 
54
  if __name__ == '__main__':
55
  st.set_page_config("Chat with Confluence Page")
56
  st.header("Chat with Confluence Page using AI")
 
 
 
57
 
58
- question = st.text_input("Ask questions related to login and registration")
59
- answer = get_response(question)
60
- st.write("Reply: ", answer)
 
 
 
 
 
 
 
 
 
 
 
9
  from langchain.chains.question_answering import load_qa_chain
10
  import streamlit as st
11
 
12
+ from config import *
13
+
14
  confluence_api_key = os.environ["CONFLUENCE_API_KEY"]
15
 
16
  if "GOOGLE_API_KEY" not in os.environ:
 
36
  vector_store = FAISS.from_texts(chunks, embedding=embeddings)
37
  vector_store.save_local("faiss_index")
38
 
39
+ #chat_history = []
40
+
41
+ def get_response(query, chat_history):
42
  prompt_template = """
43
+ Answer the question as detailed as possible based on the conversation history and the provided context, make sure to provide all the details, if the answer is not in
44
+ provided context just say, "I am not able to help. Please contact Platform Support Team at platform_support@email.com", don't provide the wrong answer\n\n
45
+ Conversation History:\n {chat_history}\n
46
  Context:\n {context}?\n
47
  Question: \n{question}\n
48
 
49
  Answer:
50
  """
51
+ prompt = PromptTemplate(template=prompt_template, input_variables=["chat_history", "context", "question"])
52
  chain = load_qa_chain(llm, chain_type="stuff", prompt=prompt)
53
  db = FAISS.load_local("faiss_index", embeddings, allow_dangerous_deserialization=True)
54
  docs = db.similarity_search(query)
55
+ response = chain({"input_documents" : docs, "question": query, "chat_history": chat_history}, return_only_outputs = True)
56
  return response["output_text"]
57
 
58
 
59
  if __name__ == '__main__':
60
  st.set_page_config("Chat with Confluence Page")
61
  st.header("Chat with Confluence Page using AI")
62
+
63
+ if "messages" not in st.session_state:
64
+ st.session_state.messages = []
65
 
66
+ for message in st.session_state.messages:
67
+ with st.chat_message(message["role"]):
68
+ st.markdown(message["content"])
69
+
70
+ if question := st.chat_input("Ask questions related to login and registration"):
71
+ st.session_state.messages.append({"role": "user", "content": question})
72
+ with st.chat_message("user"):
73
+ st.markdown(question)
74
+
75
+ with st.chat_message("assistant"):
76
+ answer = get_response(question, st.session_state.messages)
77
+ st.write(answer)
78
+ st.session_state.messages.append({"role": "assistant", "content": answer})