import os import streamlit as st from diffusers import CogVideoXImageToVideoPipeline from diffusers.utils import export_to_video, load_image import torch # Streamlit interface for uploading an image and inputting a prompt st.title("Image to Video with Hugging Face") st.write("Upload an image and provide a prompt to generate a video.") # File uploader for the input image uploaded_file = st.file_uploader("Upload an image (JPG or PNG):", type=["jpg", "jpeg", "png"]) prompt = st.text_input("Enter your prompt:", "A little girl is riding a bicycle at high speed. Focused, detailed, realistic.") if uploaded_file and prompt: try: # Save the uploaded file to a temporary location with open("uploaded_image.jpg", "wb") as f: f.write(uploaded_file.read()) # Load the image image = load_image("uploaded_image.jpg") # Initialize the CogVideoX pipeline st.write("Initializing the pipeline...") pipe = CogVideoXImageToVideoPipeline.from_pretrained( "THUDM/CogVideoX1.5-5B-I2V", torch_dtype=torch.bfloat16 ) pipe.enable_sequential_cpu_offload() pipe.vae.enable_tiling() pipe.vae.enable_slicing() # Generate the video st.write("Generating video... this may take a while.") video_frames = pipe( prompt=prompt, image=image, num_videos_per_prompt=1, num_inference_steps=50, num_frames=81, guidance_scale=6, generator=torch.Generator(device="cuda").manual_seed(42), ).frames[0] # Export the video video_path = "output.mp4" export_to_video(video_frames, video_path, fps=8) # Display the video in Streamlit st.video(video_path) except Exception as e: st.error(f"An error occurred: {e}") else: st.write("Please upload an image and provide a prompt to get started.")