Spaces:
Paused
Paused
File size: 6,211 Bytes
7347868 ee30c97 7347868 b24e029 ff5a6e0 b24e029 7347868 03df360 7347868 36886af 0b5a000 897faea 7347868 5e4db52 7347868 ff5a6e0 7347868 5e4db52 7347868 5e4db52 7347868 eee0977 a57c2fb ee30c97 a57c2fb f491420 7347868 03df360 7347868 57d8da9 7347868 57d8da9 deed901 57d8da9 7347868 e77e044 7347868 ee30c97 7347868 286e0ae 7347868 0b5bc49 7347868 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
import os
from threading import Thread
from typing import Iterator
import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from transformers import StoppingCriteria, StoppingCriteriaList, StopStringCriteria
import subprocess
import torch._dynamo
torch._dynamo.config.suppress_errors = True
MAX_MAX_NEW_TOKENS = 1024
DEFAULT_MAX_NEW_TOKENS = 512
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
DESCRIPTION = """\
# Hymba-1.5B-Instruct chat
Feel free to chat with our model! More details: [Paper](https://arxiv.org/abs/2411.13676), [Model card](https://huggingface.co/nvidia/Hymba-1.5B-Instruct), [GitHub](https://github.com/NVlabs/hymba).
"""
model_id = "nvidia/Hymba-1.5B-Instruct"
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="cuda", trust_remote_code=True)
model = model.cuda().to(torch.bfloat16)
model.compile()
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
tokenizer.chat_template = "{{'<extra_id_0>System'}}{% for message in messages %}{% if message['role'] == 'system' %}{{'\n' + message['content'].strip()}}{% if tools or contexts %}{{'\n'}}{% endif %}{% endif %}{% endfor %}{% if tools %}{% for tool in tools %}{{ '\n<tool> ' + tool|tojson + ' </tool>' }}{% endfor %}{% endif %}{% if contexts %}{% if tools %}{{'\n'}}{% endif %}{% for context in contexts %}{{ '\n<context> ' + context.strip() + ' </context>' }}{% endfor %}{% endif %}{{'\n\n'}}{% for message in messages %}{% if message['role'] == 'user' %}{{ '<extra_id_1>User\n' + message['content'].strip() + '\n' }}{% elif message['role'] == 'assistant' %}{{ '<extra_id_1>Assistant\n' + message['content'].strip() + '\n' }}{% elif message['role'] == 'tool' %}{{ '<extra_id_1>Tool\n' + message['content'].strip() + '\n' }}{% endif %}{% endfor %}{%- if add_generation_prompt %}{{'<extra_id_1>Assistant\n'}}{%- endif %}"
#tokenizer.use_default_system_prompt = False
@spaces.GPU
def generate(
message: str,
chat_history: list[dict],
system_prompt: str = "",
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2,
) -> Iterator[str]:
conversation = []
if system_prompt:
conversation.append({"role": "system", "content": system_prompt})
conversation += chat_history
conversation.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(conversation, tokenize=True, add_generation_prompt=True, return_tensors="pt").to('cuda')
stopping_criteria = StoppingCriteriaList([StopStringCriteria(tokenizer=tokenizer, stop_strings="</s>")])
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
input_ids = input_ids.to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=1.0, skip_prompt=True, skip_special_tokens=False)
generate_kwargs = dict(
{"input_ids": input_ids},
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
num_beams=1,
use_cache = True,
repetition_penalty=repetition_penalty,
stopping_criteria = stopping_criteria,
attention_mask = torch.ones_like(input_ids), # Add this
position_ids = None,
kv_last_layer = None,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
yield "".join(outputs)
chat_interface = gr.ChatInterface(
fn=generate,
additional_inputs=[
# gr.Textbox(label="System prompt", lines=6, value="You are a helpful assistant. Your name is Hymba-1.5B-Instruct-8K. \
# You are a new family of small language models featuring a hybrid-head architecture that strategically integrates attention mechanisms with state space models (SSMs). \
# You are developed by Deep Learning Efficiency Research (DLER) team at NVIDIA Research. \
# The above is just a background context. You can answer any questions not limited to the above background context."),
gr.Textbox(label="System prompt", lines=6, value="You are a helpful assistant. Your name is Hymba-1.5B-Instruct-8K. "),
gr.Slider(
label="Max new tokens",
minimum=1,
maximum=MAX_MAX_NEW_TOKENS,
step=1,
value=DEFAULT_MAX_NEW_TOKENS,
),
gr.Slider(
label="Temperature",
minimum=0.1,
maximum=4.0,
step=0.1,
value=0.6,
),
gr.Slider(
label="Top-p (nucleus sampling)",
minimum=0.05,
maximum=1.0,
step=0.05,
value=0.9,
),
gr.Slider(
label="Top-k",
minimum=1,
maximum=1000,
step=1,
value=50,
),
gr.Slider(
label="Repetition penalty",
minimum=1.0,
maximum=2.0,
step=0.05,
value=1.2,
),
],
stop_btn=True,
examples=[
["Hello there! How are you doing?"],
["Can you explain briefly to me what is the Python programming language?"],
["Explain the plot of Cinderella in a sentence."],
["How many hours does it take a man to eat a Helicopter?"],
["Write a 100-word article on 'Benefits of Open-Source in AI research'"],
],
cache_examples=False,
type="messages",
)
with gr.Blocks(css_paths="style.css", fill_height=True) as demo:
gr.Markdown(DESCRIPTION)
# gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
chat_interface.render()
# gr.Markdown(LICENSE)
if __name__ == "__main__":
demo.queue(max_size=20).launch() |