chatbot-user / user.py
poemsforaphrodite's picture
Upload 2 files
7637d2f verified
import os
from dotenv import load_dotenv
import streamlit as st
from streamlit.runtime.scriptrunner import RerunException, StopException
from openai import OpenAI
from pymongo import MongoClient
from pinecone import Pinecone
import uuid
from datetime import datetime
import time
from streamlit.runtime.caching import cache_data
# Load environment variables
load_dotenv()
# Configuration
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
MONGODB_URI = os.getenv("MONGODB_URI")
PINECONE_API_KEY = os.getenv("PINECONE_API_KEY")
PINECONE_ENVIRONMENT = os.getenv("PINECONE_ENVIRONMENT")
PINECONE_INDEX_NAME = os.getenv("PINECONE_INDEX_NAME")
# Initialize clients
openai_client = OpenAI(api_key=OPENAI_API_KEY)
mongo_client = MongoClient(MONGODB_URI)
db = mongo_client["Wall_Street"]
conversation_history = db["conversation_history"]
global_common_memory = db["global_common_memory"] # New global common memory collection
chat_history = db["chat_history"] # New collection for storing all chats
# Initialize Pinecone
pc = Pinecone(api_key=PINECONE_API_KEY)
pinecone_index = pc.Index(PINECONE_INDEX_NAME)
# Set up Streamlit page configuration
st.set_page_config(page_title="GPT-Driven Chat System - User", page_icon="💬", layout="wide")
# Custom CSS to improve the UI
st.markdown("""
<style>
/* Your custom CSS styles */
</style>
""", unsafe_allow_html=True)
# Initialize Streamlit session state
if 'chat_history' not in st.session_state:
st.session_state['chat_history'] = []
if 'user_type' not in st.session_state:
st.session_state['user_type'] = None
if 'session_id' not in st.session_state:
st.session_state['session_id'] = str(uuid.uuid4())
# --- Common Memory Functions ---
@cache_data(ttl=300) # Cache for 5 minutes
def get_global_common_memory():
"""Retrieve the global common memory."""
memory_doc = global_common_memory.find_one({"memory_id": "global_common_memory_id"})
return memory_doc.get('memory', []) if memory_doc else []
# --- Relevant Context Retrieval ---
@cache_data(ttl=60) # Cache for 1 minute
def get_relevant_context(query, top_k=3):
"""
Retrieve relevant context from Pinecone based on the user query.
"""
try:
query_embedding = openai_client.embeddings.create(
model="text-embedding-3-large", # Updated to use the larger model
input=query
).data[0].embedding
results = pinecone_index.query(vector=query_embedding, top_k=top_k, include_metadata=True)
contexts = [item['metadata']['text'] for item in results['matches']]
return " ".join(contexts)
except Exception as e:
print(f"Error retrieving context: {str(e)}")
return ""
# --- GPT Response Function ---
def get_gpt_response(prompt, context=""):
"""
Generates a response from the GPT model based on the user prompt, retrieved context, and global chat memory.
Assesses confidence and marks the response as 'uncertain' if confidence is low.
"""
try:
print(prompt)
#print(context)
common_memory = get_global_common_memory()
system_message = (
"You are a helpful assistant. Use the following context and global chat memory to inform your responses, "
"but don't mention them explicitly unless directly relevant to the user's question. "
"If you are uncertain about the answer, respond with 'I am not sure about that.'"
)
if common_memory:
# Join the memory items into a single string
memory_str = "\n".join(common_memory)
system_message += f"\n\nGlobal Chat Memory:\n{memory_str}"
print(system_message)
messages = [
{"role": "system", "content": system_message},
{"role": "user", "content": f"Context: {context}\n\nUser query: {prompt}"}
]
completion = openai_client.chat.completions.create(
model="gpt-4o-mini",
messages=messages,
temperature=0.7 # Adjust temperature for confidence control
)
response = completion.choices[0].message.content.strip()
print(response)
# Determine if the response indicates uncertainty
is_uncertain = "i am not sure about that" in response.lower()
print(is_uncertain)
return response, is_uncertain
except Exception as e:
return f"Error generating response: {str(e)}", False
# --- Send User Message ---
def send_message(message):
"""
Sends a user message. If the chatbot is uncertain, messages are sent to the operator for approval.
"""
context = get_relevant_context(message)
user_message = {
"role": "user",
"content": message,
"timestamp": datetime.utcnow(),
"status": "approved" # User messages are always approved
}
# Upsert the user message immediately
result = conversation_history.update_one(
{"session_id": st.session_state['session_id']},
{
"$push": {"messages": user_message},
"$set": {"last_updated": datetime.utcnow()},
"$setOnInsert": {"created_at": datetime.utcnow()}
},
upsert=True
)
# Update or create the chat history document
chat_history.update_one(
{"session_id": st.session_state['session_id']},
{
"$push": {"messages": user_message},
"$set": {"last_updated": datetime.utcnow()},
"$setOnInsert": {"created_at": datetime.utcnow()}
},
upsert=True
)
# Update the session state with the user message
st.session_state['chat_history'].append(user_message)
if not st.session_state.get('admin_takeover_active'):
# Generate GPT response if takeover is not active
gpt_response, is_uncertain = get_gpt_response(message, context)
if is_uncertain:
status = "pending" # Mark as pending for operator approval
else:
status = "approved"
assistant_message = {
"role": "assistant",
"content": gpt_response,
"timestamp": datetime.utcnow(),
"status": status
}
# Upsert the assistant message
result = conversation_history.update_one(
{"session_id": st.session_state['session_id']},
{
"$push": {"messages": assistant_message},
"$set": {"last_updated": datetime.utcnow()}
}
)
# Update the chat history document
chat_history.update_one(
{"session_id": st.session_state['session_id']},
{
"$push": {"messages": assistant_message},
"$set": {"last_updated": datetime.utcnow()}
}
)
# Update the session state with the assistant message
st.session_state['chat_history'].append(assistant_message)
# --- Send Admin Message ---
def send_admin_message(message):
"""
Sends an admin message directly to the user during a takeover.
"""
admin_message = {
"role": "admin",
"content": message,
"timestamp": datetime.utcnow(),
"status": "approved"
}
# Upsert the admin message
result = conversation_history.update_one(
{"session_id": st.session_state['session_id']},
{
"$push": {"messages": admin_message},
"$set": {"last_updated": datetime.utcnow()}
}
)
# Update the chat history document
chat_history.update_one(
{"session_id": st.session_state['session_id']},
{
"$push": {"messages": admin_message},
"$set": {"last_updated": datetime.utcnow()}
}
)
# Update the session state with the admin message
st.session_state['chat_history'].append(admin_message)
# --- User Page ---
def user_page():
if 'session_id' not in st.session_state:
st.session_state['session_id'] = str(uuid.uuid4())
st.title("Chat Interface")
chat_col, info_col = st.columns([3, 1])
with chat_col:
# Create a placeholder for the chat interface
chat_placeholder = st.empty()
# Add a manual refresh button
if st.button("Refresh Chat"):
fetch_and_update_chat()
# Handle new user input outside the loop
user_input = st.chat_input("Type your message here...", key="user_chat_input")
if user_input:
send_message(user_input)
# If admin takeover is active, allow admin to send messages
if st.session_state.get('admin_takeover_active'):
admin_input = st.chat_input("Admin is currently taking over the chat...", key="admin_chat_input")
if admin_input:
send_admin_message(admin_input)
# Main loop for continuous updates
while True:
with chat_placeholder.container():
# Display all messages in the chat history
for message in st.session_state['chat_history']:
if message["role"] == "user":
with st.chat_message("user"):
st.markdown(message["content"])
elif message["role"] == "assistant":
with st.chat_message("assistant"):
if message.get("status") == "approved":
st.markdown(message["content"])
elif message.get("status") == "pending":
st.info("This response is pending operator approval...")
elif message["role"] == "admin":
with st.chat_message("admin"):
st.markdown(f"**Admin:** {message['content']}")
# Fetch updates every 5 seconds
fetch_and_update_chat()
time.sleep(5)
with info_col:
st.subheader("Session Information")
stat_cols = st.columns(2)
with stat_cols[0]:
st.write(f"**Session ID:** {st.session_state['session_id'][:8]}...")
with stat_cols[1]:
st.write(f"**User Type:** {st.session_state.get('user_type', 'Regular User')}")
stat_cols = st.columns(2)
with stat_cols[0]:
st.write(f"**Chat History Count:** {len(st.session_state['chat_history'])}")
with stat_cols[1]:
st.write(f"**Last Active:** {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
# Add more user-specific information or settings as needed
# --- Fetch and Update Chat ---
def fetch_and_update_chat():
"""
Fetches the latest chat history from the database and updates the session state.
"""
chat = conversation_history.find_one({"session_id": st.session_state['session_id']})
if chat:
st.session_state['chat_history'] = chat.get('messages', [])
else:
st.session_state['chat_history'] = []
# Check if admin takeover is active
takeover_status = db.takeover_status.find_one({"session_id": st.session_state['session_id']})
is_active = takeover_status and takeover_status.get("active", False)
st.session_state['admin_takeover_active'] = is_active
# --- View Full Chat (User Perspective) ---
def view_full_chat(session_id):
st.title("Full Chat View")
chat = conversation_history.find_one({"session_id": session_id})
if chat:
st.subheader(f"Session ID: {session_id[:8]}...")
last_updated = chat.get('last_updated', datetime.utcnow())
st.write(f"Last Updated: {last_updated}")
# Display global common memory
st.subheader("Global Chat Memory")
common_memory = get_global_common_memory()
if common_memory:
for idx, item in enumerate(common_memory, 1):
st.text(f"{idx}. {item}")
else:
st.info("No global chat memory found.")
# Add button to clear global common memory
if st.button("Clear Global Chat Memory"):
clear_global_common_memory()
st.success("Global chat memory cleared successfully!")
st.rerun()
# Add admin takeover button
if st.button("Admin Takeover"):
st.session_state['admin_takeover'] = session_id
st.rerun()
for message in chat.get('messages', []):
if message['role'] == 'user':
with st.chat_message("user"):
st.markdown(message["content"])
elif message['role'] == 'assistant':
with st.chat_message("assistant"):
if message.get("status") == "approved":
st.markdown(message["content"])
else:
st.info("Waiting for admin approval...")
elif message['role'] == 'admin': # Display admin messages
with st.chat_message("admin"):
st.markdown(f"**Admin:** {message['content']}")
st.caption(f"Timestamp: {message.get('timestamp', 'N/A')}")
else:
st.error("Chat not found.")
if st.button("Back to Admin Dashboard"):
st.session_state.pop('selected_chat', None)
st.rerun()
def main():
try:
user_page()
except (RerunException, StopException):
# These exceptions are used by Streamlit for page navigation and stopping the script
raise
except Exception as e:
st.error(f"An unexpected error occurred: {str(e)}")
if __name__ == "__main__":
main()