Spaces:
Sleeping
Sleeping
File size: 8,367 Bytes
2434cea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 |
import streamlit as st
import PyPDF2
import io
import os
from dotenv import load_dotenv
from pinecone import Pinecone, ServerlessSpec
from openai import OpenAI
import uuid
import re
import time
# Load environment variables from .env file
load_dotenv()
# Initialize OpenAI client
client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
# Initialize Pinecone
PINECONE_API_KEY = os.getenv("PINECONE_API_KEY")
PINECONE_ENVIRONMENT = os.getenv("PINECONE_ENVIRONMENT")
INDEX_NAME = "ghana"
EMBEDDING_MODEL = "text-embedding-3-large"
EMBEDDING_DIMENSION = 3072
# Initialize Pinecone
pc = Pinecone(api_key=PINECONE_API_KEY)
# Check if the index exists
if INDEX_NAME not in pc.list_indexes().names():
# Create the index with updated dimensions
pc.create_index(
name=INDEX_NAME,
dimension=EMBEDDING_DIMENSION,
metric="cosine",
spec=ServerlessSpec(
cloud=PINECONE_ENVIRONMENT.split('-')[0], # Assuming environment is in format 'gcp-starter'
region=PINECONE_ENVIRONMENT.split('-')[1]
)
)
else:
# Optionally, verify the existing index's dimension matches
existing_index = pc.describe_index(INDEX_NAME)
if existing_index.dimension != EMBEDDING_DIMENSION:
raise ValueError(f"Existing index '{INDEX_NAME}' has dimension {existing_index.dimension}, expected {EMBEDDING_DIMENSION}. Please choose a different index name or adjust accordingly.")
# Connect to the Pinecone index
index = pc.Index(INDEX_NAME)
def transcribe_pdf(pdf_file):
print("Starting PDF transcription...")
# Read PDF and extract text
pdf_reader = PyPDF2.PdfReader(io.BytesIO(pdf_file))
text = ""
for page in pdf_reader.pages:
page_text = page.extract_text()
if page_text:
text += page_text + "\n"
print(f"Extracted {len(text)} characters from PDF.")
# Dynamic Chunking
chunks = dynamic_chunking(text, max_tokens=500, overlap=50)
print(f"Created {len(chunks)} chunks from the extracted text.")
# Process chunks one by one
progress_bar = st.progress(0)
for i, chunk in enumerate(chunks):
print(f"Processing chunk {i+1}/{len(chunks)}...")
# Generate embedding for the chunk
embedding = get_embedding(chunk)
# Prepare upsert data
upsert_data = [(str(uuid.uuid4()), embedding, {"text": chunk})]
# Upsert to Pinecone
print(f"Upserting vector to Pinecone index '{INDEX_NAME}'...")
index.upsert(vectors=upsert_data)
# Update progress bar
progress = (i + 1) / len(chunks)
progress_bar.progress(progress)
# Optional: Add a small delay to avoid potential rate limits
time.sleep(0.5)
progress_bar.empty()
return f"Successfully processed and upserted {len(chunks)} chunks to Pinecone index '{INDEX_NAME}'."
def dynamic_chunking(text, max_tokens=200, overlap=100):
print(f"Starting dynamic chunking with max_tokens={max_tokens} and overlap={overlap}...")
tokens = re.findall(r'\S+', text)
chunks = []
start = 0
while start < len(tokens):
end = start + max_tokens
chunk = ' '.join(tokens[start:end])
chunks.append(chunk)
start += max_tokens - overlap
print(f"Dynamic chunking complete. Created {len(chunks)} chunks.")
return chunks
def get_embedding(chunk):
print("Generating embedding for chunk...")
try:
response = client.embeddings.create(
input=chunk, # Now we can pass the chunk directly
model=EMBEDDING_MODEL
)
embedding = response.data[0].embedding
print("Successfully generated embedding.")
return embedding
except Exception as e:
print(f"Error during embedding generation: {str(e)}")
raise e
def clear_database():
print("Clearing the Pinecone index...")
try:
index.delete(delete_all=True)
return "Successfully cleared all vectors from the Pinecone index."
except Exception as e:
print(f"Error clearing the Pinecone index: {str(e)}")
return f"Error clearing the Pinecone index: {str(e)}"
def query_database(query_text):
print(f"Querying database with: {query_text}")
try:
query_embedding = get_embedding(query_text)
results = index.query(vector=query_embedding, top_k=5, include_metadata=True)
context = ""
for match in results['matches']:
metadata = match.get('metadata', {})
text = metadata.get('text', '')
context += f"{text}\n\n"
if not context:
return "No relevant information found in the database."
return generate_answer(query_text, context)
except Exception as e:
print(f"Error querying the database: {str(e)}")
return f"Error querying the database: {str(e)}"
def generate_answer(query, context):
try:
response = client.chat.completions.create(
model="gpt-4o-mini",
messages=[
{"role": "system", "content": "You are an assistant for the Ghana Labor Act. Use the provided context to answer the user's question accurately and concisely."},
{"role": "user", "content": f"Context:\n{context}\n\nQuestion: {query}"}
]
)
return response.choices[0].message.content
except Exception as e:
print(f"Error generating answer: {str(e)}")
return f"Error generating answer: {str(e)}"
def generate_hr_document(prompt):
print(f"Generating HR document with prompt: {prompt}")
try:
response = client.chat.completions.create(
model="gpt-4o-mini", # Updated to use gpt-4o-mini
messages=[
{"role": "system", "content": "You are an HR assistant. Generate a professional HR document based on the given prompt."},
{"role": "user", "content": prompt}
]
)
return response.choices[0].message.content
except Exception as e:
print(f"Error generating HR document: {str(e)}")
return f"Error generating HR document: {str(e)}"
def main():
st.set_page_config(page_title="HR Document Assistant", layout="wide")
st.title("HR Document Assistant")
tab1, tab2, tab3, tab4 = st.tabs(["π€ Upload PDF", "π Query Database", "π Generate HR Document", "ποΈ Clear Database"])
with tab1:
st.header("Upload PDF")
st.write("Upload a PDF file to extract its text content, chunk it dynamically, and upsert the chunks to the Pinecone index.")
pdf_file = st.file_uploader("Upload PDF", type="pdf")
if st.button("π₯ Transcribe and Upsert"):
if pdf_file is not None:
with st.spinner("Processing PDF..."):
result = transcribe_pdf(pdf_file.read())
st.success(result)
else:
st.error("Please upload a PDF file first.")
with tab2:
st.header("Query Database")
st.write("Enter a query about the Ghana Labor Act.")
query = st.text_input("Enter your query", placeholder="What does the Act say about...?")
if st.button("π Get Answer"):
answer = query_database(query)
st.markdown("### Answer:")
st.write(answer)
with tab3:
st.header("Generate HR Document")
st.write("Enter a prompt to generate an HR document using GPT-4.")
prompt = st.text_area("Enter your prompt", placeholder="Describe the HR document you need...")
if st.button("βοΈ Generate Document"):
document = generate_hr_document(prompt)
st.text_area("Generated Document", value=document, height=400)
with tab4:
st.header("Clear Database")
st.write("Use this option carefully. It will remove all data from the Pinecone index.")
if st.button("ποΈ Clear Database"):
result = clear_database()
st.success(result)
st.markdown("""
### π Note
- Ensure you have the necessary API keys set up for OpenAI and Pinecone.
- The PDF upload process may take some time depending on the file size.
- Generated HR documents are based on AI and may require human review.
""")
if __name__ == "__main__":
main() |