Spaces:
Running
Running
File size: 19,182 Bytes
7b55067 50648d0 7b55067 7609612 7b55067 cec8122 dcc6e39 7b55067 baf3211 7b55067 82b97bd a1f9248 7b55067 91e9e9a 7b55067 a1f9248 7b55067 91e9e9a 7b55067 3250b31 7b55067 1f18d28 7b55067 fd6bb51 82b97bd 7b55067 82b97bd 7b55067 82b97bd a1f9248 82b97bd a1f9248 2038e8b 91e9e9a ac4b067 82b97bd 230aabc 82b97bd 230aabc 91e9e9a 230aabc 91e9e9a 2038e8b 230aabc 91e9e9a 230aabc ac4b067 230aabc fde6668 82b97bd 3250b31 a1f9248 3250b31 82b97bd fde6668 230aabc 91e9e9a 230aabc 2038e8b fde6668 230aabc fde6668 230aabc 82b97bd 91e9e9a 2038e8b dcc6e39 3250b31 91e9e9a 3250b31 91e9e9a dcc6e39 91e9e9a ac4b067 82b97bd 7b55067 dcc6e39 82b97bd dcc6e39 3d7a954 f52f788 82b97bd dcc6e39 82b97bd ee5283f 82b97bd dcc6e39 82b97bd dcc6e39 82b97bd dcc6e39 82b97bd dcc6e39 82b97bd dcc6e39 82b97bd dcc6e39 82b97bd 9ae1da2 82b97bd dcc6e39 fbb8761 dcc6e39 82b97bd dcc6e39 2038e8b 91e9e9a 82b97bd dcc6e39 82b97bd dcc6e39 82b97bd 3d7a954 dcc6e39 82b97bd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 |
# Standard library imports
import datetime
import base64
import os
import sys
# Related third-party imports
import streamlit as st
from streamlit_elements import elements
from google_auth_oauthlib.flow import Flow
from googleapiclient.discovery import build
from dotenv import load_dotenv
import pandas as pd
import searchconsole
import cohere
from sklearn.metrics.pairwise import cosine_similarity
import requests
import logging
from bs4 import BeautifulSoup
load_dotenv()
# Set up logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
stream=sys.stdout # This will ensure the logs are captured by Hugging Face
)
logger = logging.getLogger(__name__)
# Explicitly set Streamlit's logg
st.set_option('deprecation.showfileUploaderEncoding', False)
# Initialize Cohere client
COHERE_API_KEY = os.environ["COHERE_API_KEY"]
co = cohere.Client(COHERE_API_KEY)
# Configuration: Set to True if running locally, False if running on Streamlit Cloud
IS_LOCAL = False
# Constants
SEARCH_TYPES = ["web", "image", "video", "news", "discover", "googleNews"]
DATE_RANGE_OPTIONS = [
"Last 7 Days",
"Last 30 Days",
"Last 3 Months",
"Last 6 Months",
"Last 12 Months",
"Last 16 Months",
"Custom Range"
]
DEVICE_OPTIONS = ["All Devices", "desktop", "mobile", "tablet"]
BASE_DIMENSIONS = ["page", "query", "country", "date"]
MAX_ROWS = 250_000
DF_PREVIEW_ROWS = 100
# -------------
# Streamlit App Configuration
# -------------
def setup_streamlit():
st.set_page_config(page_title="Keyword Relevance Test", layout="wide")
st.title("Keyword Relevance Test Using Vector Embedding")
st.divider()
def init_session_state():
if 'selected_property' not in st.session_state:
st.session_state.selected_property = None
if 'selected_search_type' not in st.session_state:
st.session_state.selected_search_type = 'web'
if 'selected_date_range' not in st.session_state:
st.session_state.selected_date_range = 'Last 7 Days'
if 'start_date' not in st.session_state:
st.session_state.start_date = datetime.date.today() - datetime.timedelta(days=7)
if 'end_date' not in st.session_state:
st.session_state.end_date = datetime.date.today()
if 'selected_dimensions' not in st.session_state:
st.session_state.selected_dimensions = ['page', 'query']
if 'selected_device' not in st.session_state:
st.session_state.selected_device = 'All Devices'
if 'custom_start_date' not in st.session_state:
st.session_state.custom_start_date = datetime.date.today() - datetime.timedelta(days=7)
if 'custom_end_date' not in st.session_state:
st.session_state.custom_end_date = datetime.date.today()
# -------------
# Data Processing Functions
# -------------
def fetch_content(url):
try:
response = requests.get(url)
response.raise_for_status()
soup = BeautifulSoup(response.text, 'html.parser')
content = soup.get_text(separator=' ', strip=True)
return content
except requests.RequestException as e:
return str(e)
def generate_embeddings(text_list, model_type):
if not text_list:
return []
model = 'embed-english-v3.0' if model_type == 'english' else 'embed-multilingual-v3.0'
input_type = 'search_document'
response = co.embed(model=model, texts=text_list, input_type=input_type)
embeddings = response.embeddings
return embeddings
def calculate_single_relevancy_score(page_content, query, model_type):
page_embedding = generate_embeddings([page_content], model_type)[0]
query_embedding = generate_embeddings([query], model_type)[0]
relevancy_score = cosine_similarity([query_embedding], [page_embedding])[0][0]
return relevancy_score
def process_gsc_data(df):
df_sorted = df.sort_values(['impressions'], ascending=[False])
df_unique = df_sorted.drop_duplicates(subset='page', keep='first')
result = df_unique[['page', 'query', 'clicks', 'impressions', 'ctr', 'position']]
result['relevancy_score'] = None # Initialize relevancy_score as None
return result
# -------------
# Google Authentication Functions
# -------------
def load_config():
client_config = {
"web": {
"client_id": os.environ["CLIENT_ID"],
"client_secret": os.environ["CLIENT_SECRET"],
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
"token_uri": "https://oauth2.googleapis.com/token",
"redirect_uris": ["https://poemsforaphrodite-gscpro.hf.space/"],
}
}
return client_config
def init_oauth_flow(client_config):
scopes = ["https://www.googleapis.com/auth/webmasters.readonly"]
flow = Flow.from_client_config(
client_config,
scopes=scopes,
redirect_uri=client_config["web"]["redirect_uris"][0]
)
return flow
def google_auth(client_config):
flow = init_oauth_flow(client_config)
auth_url, _ = flow.authorization_url(prompt="consent")
return flow, auth_url
def auth_search_console(client_config, credentials):
token = {
"token": credentials.token,
"refresh_token": credentials.refresh_token,
"token_uri": credentials.token_uri,
"client_id": credentials.client_id,
"client_secret": credentials.client_secret,
"scopes": credentials.scopes,
"id_token": getattr(credentials, "id_token", None),
}
return searchconsole.authenticate(client_config=client_config, credentials=token)
# -------------
# Data Fetching Functions
# -------------
def list_gsc_properties(credentials):
service = build('webmasters', 'v3', credentials=credentials)
site_list = service.sites().list().execute()
return [site['siteUrl'] for site in site_list.get('siteEntry', [])] or ["No properties found"]
def fetch_gsc_data(webproperty, search_type, start_date, end_date, dimensions, device_type=None):
query = webproperty.query.range(start_date, end_date).search_type(search_type).dimension(*dimensions)
if 'device' in dimensions and device_type and device_type != 'All Devices':
query = query.filter('device', 'equals', device_type.lower())
try:
df = query.limit(MAX_ROWS).get().to_dataframe()
return process_gsc_data(df)
except Exception as e:
show_error(e)
return pd.DataFrame()
def calculate_relevancy_scores(df, model_type):
with st.spinner('Calculating relevancy scores...'):
try:
page_contents = [fetch_content(url) for url in df['page']]
page_embeddings = generate_embeddings(page_contents, model_type)
query_embeddings = generate_embeddings(df['query'].tolist(), model_type)
relevancy_scores = cosine_similarity(query_embeddings, page_embeddings).diagonal()
df = df.assign(relevancy_score=relevancy_scores)
except Exception as e:
st.warning(f"Error calculating relevancy scores: {e}")
df = df.assign(relevancy_score=0)
return df
# -------------
# Utility Functions
# -------------
def update_dimensions(selected_search_type):
return BASE_DIMENSIONS + ['device'] if selected_search_type in SEARCH_TYPES else BASE_DIMENSIONS
def calc_date_range(selection, custom_start=None, custom_end=None):
range_map = {
'Last 7 Days': 7,
'Last 30 Days': 30,
'Last 3 Months': 90,
'Last 6 Months': 180,
'Last 12 Months': 365,
'Last 16 Months': 480
}
today = datetime.date.today()
if selection == 'Custom Range':
if custom_start and custom_end:
return custom_start, custom_end
else:
return today - datetime.timedelta(days=7), today
return today - datetime.timedelta(days=range_map.get(selection, 0)), today
def show_error(e):
st.error(f"An error occurred: {e}")
def property_change():
st.session_state.selected_property = st.session_state['selected_property_selector']
# -------------
# File & Download Operations
# -------------
def show_dataframe(report):
with st.expander("Preview the First 100 Rows (Unique Pages with Top Query)"):
st.dataframe(report.head(DF_PREVIEW_ROWS))
def download_csv_link(report):
def to_csv(df):
return df.to_csv(index=False, encoding='utf-8-sig')
csv = to_csv(report)
b64_csv = base64.b64encode(csv.encode()).decode()
href = f'<a href="data:file/csv;base64,{b64_csv}" download="search_console_data.csv">Download CSV File</a>'
st.markdown(href, unsafe_allow_html=True)
# -------------
# Streamlit UI Components
# -------------
def show_google_sign_in(auth_url):
with st.sidebar:
if st.button("Sign in with Google"):
st.write('Please click the link below to sign in:')
st.markdown(f'[Google Sign-In]({auth_url})', unsafe_allow_html=True)
def show_property_selector(properties, account):
selected_property = st.selectbox(
"Select a Search Console Property:",
properties,
index=properties.index(
st.session_state.selected_property) if st.session_state.selected_property in properties else 0,
key='selected_property_selector',
on_change=property_change
)
return account[selected_property]
def show_search_type_selector():
return st.selectbox(
"Select Search Type:",
SEARCH_TYPES,
index=SEARCH_TYPES.index(st.session_state.selected_search_type),
key='search_type_selector'
)
def show_model_type_selector():
return st.selectbox(
"Select the embedding model:",
["english", "multilingual"],
key='model_type_selector'
)
def show_date_range_selector():
return st.selectbox(
"Select Date Range:",
DATE_RANGE_OPTIONS,
index=DATE_RANGE_OPTIONS.index(st.session_state.selected_date_range),
key='date_range_selector'
)
def show_custom_date_inputs():
st.session_state.custom_start_date = st.date_input("Start Date", st.session_state.custom_start_date)
st.session_state.custom_end_date = st.date_input("End Date", st.session_state.custom_end_date)
def show_dimensions_selector(search_type):
available_dimensions = update_dimensions(search_type)
return st.multiselect(
"Select Dimensions:",
available_dimensions,
default=st.session_state.selected_dimensions,
key='dimensions_selector'
)
def show_paginated_dataframe(report, rows_per_page=20, model_type='english'):
# Check if required columns are present
required_columns = ['page', 'query', 'clicks', 'impressions', 'ctr', 'position']
missing_columns = [col for col in required_columns if col not in report.columns]
if missing_columns:
st.error(f"Error: The following required columns are missing from the data: {', '.join(missing_columns)}")
return report
report['position'] = report['position'].astype(int)
report['impressions'] = pd.to_numeric(report['impressions'], errors='coerce')
def format_ctr(x):
try:
return f"{float(x):.2%}"
except ValueError:
return x
def format_relevancy_score(x):
if x is None:
return '<button class="calculate-btn">Calculate</button>'
try:
return f"{float(x):.2f}"
except ValueError:
return x
report['ctr'] = report['ctr'].apply(format_ctr)
if 'relevancy_score' not in report.columns:
report['relevancy_score'] = None
report['relevancy_score'] = report['relevancy_score'].apply(format_relevancy_score)
def make_clickable(url):
return f'<a href="{url}" target="_blank">{url}</a>'
report['clickable_url'] = report['page'].apply(make_clickable)
columns = ['clickable_url', 'query', 'impressions', 'clicks', 'ctr', 'position', 'relevancy_score']
report = report[columns]
sort_column = st.selectbox("Sort by:", columns[1:], index=columns[1:].index('impressions'))
sort_order = st.radio("Sort order:", ("Descending", "Ascending"))
ascending = sort_order == "Ascending"
def safe_float_convert(x):
try:
return float(x.rstrip('%')) / 100 if isinstance(x, str) and x.endswith('%') else float(x)
except ValueError:
return 0
report['ctr_numeric'] = report['ctr'].apply(safe_float_convert)
report['relevancy_score_numeric'] = report['relevancy_score'].apply(lambda x: safe_float_convert(x) if x != '<button class="calculate-btn">Calculate</button>' else -1)
sort_column_numeric = sort_column + '_numeric' if sort_column in ['ctr', 'relevancy_score'] else sort_column
report = report.sort_values(by=sort_column_numeric, ascending=ascending)
report = report.drop(columns=['ctr_numeric', 'relevancy_score_numeric'])
total_rows = len(report)
total_pages = (total_rows - 1) // rows_per_page + 1
if 'current_page' not in st.session_state:
st.session_state.current_page = 1
col1, col2, col3 = st.columns([1,3,1])
with col1:
if st.button("Previous", disabled=st.session_state.current_page == 1):
st.session_state.current_page -= 1
with col2:
st.write(f"Page {st.session_state.current_page} of {total_pages}")
with col3:
if st.button("Next", disabled=st.session_state.current_page == total_pages):
st.session_state.current_page += 1
start_idx = (st.session_state.current_page - 1) * rows_per_page
end_idx = start_idx + rows_per_page
# Create a placeholder for the dataframe
dataframe_placeholder = st.empty()
# Function to update the dataframe
def update_dataframe():
df_html = report.iloc[start_idx:end_idx].to_html(escape=False, index=False)
df_html = df_html.replace('</table>', ''.join([
'<style>',
'.calculate-btn { cursor: pointer; padding: 5px 10px; background-color: #4CAF50; color: white; border: none; border-radius: 4px; }',
'.calculate-btn:hover { background-color: #45a049; }',
'</style>',
*[f'<script>document.getElementsByTagName("table")[0].rows[{i+1}].cells[6].onclick = function(e) {{ if(e.target.classList.contains("calculate-btn")) {{ Streamlit.setComponentValue("calculate_relevancy", {start_idx + i}); }} }}</script>'
for i in range(min(rows_per_page, len(report) - start_idx))]
]) + '</table>')
dataframe_placeholder.markdown(df_html, unsafe_allow_html=True)
# Initial dataframe display
update_dataframe()
# Handle relevancy calculation
if st.session_state.get('calculate_relevancy') is not None:
row_index = st.session_state.calculate_relevancy
logger.info(f"Calculating relevancy for row index: {row_index}")
try:
page_content = fetch_content(report.iloc[row_index]['page'])
query = report.iloc[row_index]['query']
relevancy_score = calculate_single_relevancy_score(page_content, query, model_type)
logger.info(f"Relevancy score calculated: {relevancy_score}")
report.at[row_index, 'relevancy_score'] = f"{relevancy_score:.2f}"
st.session_state.calculate_relevancy = None # Reset the state
update_dataframe() # Update the dataframe display
st.success(f"Relevancy score calculated for row {row_index + 1}")
except Exception as e:
logger.error(f"Error calculating relevancy score: {str(e)}")
st.error(f"Error calculating relevancy score: {str(e)}")
return report
# -------------
# Main Streamlit App Function
# -------------
def main():
logger.info("Starting the Streamlit app")
setup_streamlit()
client_config = load_config()
if 'auth_flow' not in st.session_state or 'auth_url' not in st.session_state:
logger.info("Initializing Google auth flow")
st.session_state.auth_flow, st.session_state.auth_url = google_auth(client_config)
# Directly access query parameters using st.query_params
query_params = st.query_params
# Retrieve the 'code' parameter
auth_code = query_params.get("code", None)
if auth_code and 'credentials' not in st.session_state:
logger.info("Fetching token with auth code")
st.session_state.auth_flow.fetch_token(code=auth_code)
st.session_state.credentials = st.session_state.auth_flow.credentials
logger.info("Credentials stored in session state")
if 'credentials' not in st.session_state:
logger.info("No credentials found, showing Google sign-in")
show_google_sign_in(st.session_state.auth_url)
else:
logger.info("Credentials found, initializing session state")
init_session_state()
account = auth_search_console(client_config, st.session_state.credentials)
properties = list_gsc_properties(st.session_state.credentials)
if properties:
logger.info(f"Found {len(properties)} properties")
webproperty = show_property_selector(properties, account)
search_type = show_search_type_selector()
date_range_selection = show_date_range_selector()
model_type = show_model_type_selector()
if date_range_selection == 'Custom Range':
show_custom_date_inputs()
start_date, end_date = st.session_state.custom_start_date, st.session_state.custom_end_date
else:
start_date, end_date = calc_date_range(date_range_selection)
selected_dimensions = show_dimensions_selector(search_type)
if 'report_data' not in st.session_state:
st.session_state.report_data = None
if st.button("Fetch Data"):
with st.spinner('Fetching data...'):
logger.info(f"Fetching GSC data for {webproperty} from {start_date} to {end_date}")
st.session_state.report_data = fetch_gsc_data(webproperty, search_type, start_date, end_date, selected_dimensions)
logger.info(f"Data fetched: {len(st.session_state.report_data)} rows")
if st.session_state.report_data is not None and not st.session_state.report_data.empty:
logger.info("Displaying fetched data")
st.write("Data fetched successfully. Click the 'Calculate' button in the Relevancy Score column to calculate the score for each row.")
st.session_state.report_data = show_paginated_dataframe(st.session_state.report_data, model_type=model_type)
download_csv_link(st.session_state.report_data)
elif st.session_state.report_data is not None:
logger.warning("No data found for the selected criteria")
st.warning("No data found for the selected criteria.")
else:
logger.warning("No properties found for the account")
st.warning("No properties found for your Google Search Console account.")
if __name__ == "__main__":
logger.info("Application started")
main() |