Spaces:
Sleeping
Sleeping
File size: 14,502 Bytes
7b55067 fd6bb51 7b55067 fd6bb51 7b55067 fd6bb51 7b55067 fd6bb51 7b55067 fd6bb51 7b55067 fd6bb51 7b55067 fd6bb51 7b55067 fd6bb51 7b55067 fd6bb51 7b55067 fd6bb51 7b55067 3d7a954 f52f788 56e7b53 fd6bb51 56e7b53 fd6bb51 0d6414e 56e7b53 3d7a954 56e7b53 fd6bb51 56e7b53 3d7a954 56e7b53 fd6bb51 56e7b53 fd6bb51 026bae0 3d7a954 fd6bb51 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 |
# Standard library imports
import datetime
import base64
import os
# Related third-party imports
import streamlit as st
from streamlit_elements import elements
from google_auth_oauthlib.flow import Flow
from googleapiclient.discovery import build
from dotenv import load_dotenv
import pandas as pd
import searchconsole
import cohere
from sklearn.metrics.pairwise import cosine_similarity
import requests
from bs4 import BeautifulSoup
load_dotenv()
#test
# Initialize Cohere client
COHERE_API_KEY = os.environ["COHERE_API_KEY"]
co = cohere.Client(COHERE_API_KEY)
# Configuration: Set to True if running locally, False if running on Streamlit Cloud
IS_LOCAL = False
# Constants
SEARCH_TYPES = ["web", "image", "video", "news", "discover", "googleNews"]
DATE_RANGE_OPTIONS = [
"Last 7 Days",
"Last 30 Days",
"Last 3 Months",
"Last 6 Months",
"Last 12 Months",
"Last 16 Months",
"Custom Range"
]
DEVICE_OPTIONS = ["All Devices", "desktop", "mobile", "tablet"]
BASE_DIMENSIONS = ["page", "query", "country", "date"]
MAX_ROWS = 250_000
DF_PREVIEW_ROWS = 100
# -------------
# Streamlit App Configuration
# -------------
def setup_streamlit():
st.set_page_config(page_title="Simple Google Search Console Data", layout="wide")
st.title("✨ Simple Google Search Console Data | June 2024")
st.markdown(f"### Lightweight GSC Data Extractor. (Max {MAX_ROWS:,} Rows)")
st.divider()
def init_session_state():
if 'selected_property' not in st.session_state:
st.session_state.selected_property = None
if 'selected_search_type' not in st.session_state:
st.session_state.selected_search_type = 'web'
if 'selected_date_range' not in st.session_state:
st.session_state.selected_date_range = 'Last 7 Days'
if 'start_date' not in st.session_state:
st.session_state.start_date = datetime.date.today() - datetime.timedelta(days=7)
if 'end_date' not in st.session_state:
st.session_state.end_date = datetime.date.today()
if 'selected_dimensions' not in st.session_state:
st.session_state.selected_dimensions = ['page', 'query']
if 'selected_device' not in st.session_state:
st.session_state.selected_device = 'All Devices'
if 'custom_start_date' not in st.session_state:
st.session_state.custom_start_date = datetime.date.today() - datetime.timedelta(days=7)
if 'custom_end_date' not in st.session_state:
st.session_state.custom_end_date = datetime.date.today()
# -------------
# Data Processing Functions
# -------------
def fetch_content(url):
try:
response = requests.get(url)
response.raise_for_status()
soup = BeautifulSoup(response.text, 'html.parser')
content = soup.get_text(separator=' ', strip=True)
return content
except requests.RequestException as e:
return str(e)
def generate_embeddings(text_list, model_type):
if not text_list:
return []
model = 'embed-english-v3.0' if model_type == 'english' else 'embed-multilingual-v3.0'
input_type = 'search_document'
response = co.embed(model=model, texts=text_list, input_type=input_type)
embeddings = response.embeddings
return embeddings
def calculate_relevancy_scores(df, model_type):
try:
page_contents = [fetch_content(url) for url in df['page']]
page_embeddings = generate_embeddings(page_contents, model_type)
query_embeddings = generate_embeddings(df['query'].tolist(), model_type)
relevancy_scores = cosine_similarity(query_embeddings, page_embeddings).diagonal()
df = df.assign(relevancy_score=relevancy_scores)
except Exception as e:
st.warning(f"Error calculating relevancy scores: {e}")
df = df.assign(relevancy_score=0)
return df
def process_gsc_data(df):
# Filter for queries below position 10
df_filtered = df[df['position'] > 10].copy()
# Sort by impressions in descending order
df_sorted = df_filtered.sort_values(['impressions'], ascending=[False])
# Keep only the highest impression query for each page
df_unique = df_sorted.drop_duplicates(subset='page', keep='first')
if 'relevancy_score' not in df_unique.columns:
df_unique['relevancy_score'] = 0
else:
df_unique['relevancy_score'] = df_sorted.groupby('page')['relevancy_score'].first().values
result = df_unique[['page', 'query', 'clicks', 'impressions', 'ctr', 'position', 'relevancy_score']]
return result
# -------------
# Google Authentication Functions
# -------------
def load_config():
client_config = {
"web": {
"client_id": os.environ["CLIENT_ID"],
"client_secret": os.environ["CLIENT_SECRET"],
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
"token_uri": "https://oauth2.googleapis.com/token",
"redirect_uris": ["https://poemsforaphrodite-gscpro.hf.space/"],
}
}
return client_config
def init_oauth_flow(client_config):
scopes = ["https://www.googleapis.com/auth/webmasters.readonly"]
flow = Flow.from_client_config(
client_config,
scopes=scopes,
redirect_uri=client_config["web"]["redirect_uris"][0]
)
return flow
def google_auth(client_config):
flow = init_oauth_flow(client_config)
auth_url, _ = flow.authorization_url(prompt="consent")
return flow, auth_url
def auth_search_console(client_config, credentials):
token = {
"token": credentials.token,
"refresh_token": credentials.refresh_token,
"token_uri": credentials.token_uri,
"client_id": credentials.client_id,
"client_secret": credentials.client_secret,
"scopes": credentials.scopes,
"id_token": getattr(credentials, "id_token", None),
}
return searchconsole.authenticate(client_config=client_config, credentials=token)
# -------------
# Data Fetching Functions
# -------------
def list_gsc_properties(credentials):
service = build('webmasters', 'v3', credentials=credentials)
site_list = service.sites().list().execute()
return [site['siteUrl'] for site in site_list.get('siteEntry', [])] or ["No properties found"]
def fetch_gsc_data(webproperty, search_type, start_date, end_date, dimensions, device_type=None):
query = webproperty.query.range(start_date, end_date).search_type(search_type).dimension(*dimensions)
if 'device' in dimensions and device_type and device_type != 'All Devices':
query = query.filter('device', 'equals', device_type.lower())
try:
df = query.limit(MAX_ROWS).get().to_dataframe()
return process_gsc_data(df)
except Exception as e:
show_error(e)
return pd.DataFrame()
def fetch_data_loading(webproperty, search_type, start_date, end_date, dimensions, device_type=None, model_type='english'):
with st.spinner('Fetching data and calculating relevancy scores...'):
df = fetch_gsc_data(webproperty, search_type, start_date, end_date, dimensions, device_type)
if not df.empty:
df = calculate_relevancy_scores(df, model_type)
processed_df = process_gsc_data(df)
return processed_df
# -------------
# Utility Functions
# -------------
def update_dimensions(selected_search_type):
return BASE_DIMENSIONS + ['device'] if selected_search_type in SEARCH_TYPES else BASE_DIMENSIONS
def calc_date_range(selection, custom_start=None, custom_end=None):
range_map = {
'Last 7 Days': 7,
'Last 30 Days': 30,
'Last 3 Months': 90,
'Last 6 Months': 180,
'Last 12 Months': 365,
'Last 16 Months': 480
}
today = datetime.date.today()
if selection == 'Custom Range':
if custom_start and custom_end:
return custom_start, custom_end
else:
return today - datetime.timedelta(days=7), today
return today - datetime.timedelta(days=range_map.get(selection, 0)), today
def show_error(e):
st.error(f"An error occurred: {e}")
def property_change():
st.session_state.selected_property = st.session_state['selected_property_selector']
# -------------
# File & Download Operations
# -------------
def show_dataframe(report):
with st.expander("Preview the First 100 Rows (Unique Pages with Top Query)"):
st.dataframe(report.head(DF_PREVIEW_ROWS))
def download_csv_link(report):
def to_csv(df):
return df.to_csv(index=False, encoding='utf-8-sig')
csv = to_csv(report)
b64_csv = base64.b64encode(csv.encode()).decode()
href = f'<a href="data:file/csv;base64,{b64_csv}" download="search_console_data.csv">Download CSV File</a>'
st.markdown(href, unsafe_allow_html=True)
# -------------
# Streamlit UI Components
# -------------
def show_google_sign_in(auth_url):
with st.sidebar:
if st.button("Sign in with Google"):
st.write('Please click the link below to sign in:')
st.markdown(f'[Google Sign-In]({auth_url})', unsafe_allow_html=True)
def show_property_selector(properties, account):
selected_property = st.selectbox(
"Select a Search Console Property:",
properties,
index=properties.index(
st.session_state.selected_property) if st.session_state.selected_property in properties else 0,
key='selected_property_selector',
on_change=property_change
)
return account[selected_property]
def show_search_type_selector():
return st.selectbox(
"Select Search Type:",
SEARCH_TYPES,
index=SEARCH_TYPES.index(st.session_state.selected_search_type),
key='search_type_selector'
)
def show_model_type_selector():
return st.selectbox(
"Select the embedding model:",
["english", "multilingual"],
key='model_type_selector'
)
def show_date_range_selector():
return st.selectbox(
"Select Date Range:",
DATE_RANGE_OPTIONS,
index=DATE_RANGE_OPTIONS.index(st.session_state.selected_date_range),
key='date_range_selector'
)
def show_custom_date_inputs():
st.session_state.custom_start_date = st.date_input("Start Date", st.session_state.custom_start_date)
st.session_state.custom_end_date = st.date_input("End Date", st.session_state.custom_end_date)
def show_dimensions_selector(search_type):
available_dimensions = update_dimensions(search_type)
return st.multiselect(
"Select Dimensions:",
available_dimensions,
default=st.session_state.selected_dimensions,
key='dimensions_selector'
)
def show_paginated_dataframe(report, rows_per_page=20):
# Convert 'position' column to integer
report['position'] = report['position'].astype(int)
# Create a clickable URL column
def make_clickable(url):
return f'<a href="{url}" target="_blank">{url}</a>'
report['clickable_url'] = report['page'].apply(make_clickable)
# Reorder columns to put clickable_url first and sort by impressions
columns = ['clickable_url', 'query', 'impressions', 'clicks', 'ctr', 'position', 'relevancy_score']
report = report[columns].sort_values('impressions', ascending=False)
total_rows = len(report)
total_pages = (total_rows - 1) // rows_per_page + 1
if 'current_page' not in st.session_state:
st.session_state.current_page = 1
col1, col2, col3 = st.columns([1,3,1])
with col1:
if st.button("Previous", disabled=st.session_state.current_page == 1):
st.session_state.current_page -= 1
with col2:
st.write(f"Page {st.session_state.current_page} of {total_pages}")
with col3:
if st.button("Next", disabled=st.session_state.current_page == total_pages):
st.session_state.current_page += 1
start_idx = (st.session_state.current_page - 1) * rows_per_page
end_idx = start_idx + rows_per_page
# Use st.markdown to display the dataframe with clickable links
st.markdown(report.iloc[start_idx:end_idx].to_html(escape=False, index=False), unsafe_allow_html=True)
# -------------
# Main Streamlit App Function
# -------------
def main():
setup_streamlit()
client_config = load_config()
if 'auth_flow' not in st.session_state or 'auth_url' not in st.session_state:
st.session_state.auth_flow, st.session_state.auth_url = google_auth(client_config)
query_params = st.experimental_get_query_params()
print(query_params)
auth_code = query_params.get("code", [None])[0]
if auth_code and 'credentials' not in st.session_state:
st.session_state.auth_flow.fetch_token(code=auth_code)
st.session_state.credentials = st.session_state.auth_flow.credentials
if 'credentials' not in st.session_state:
show_google_sign_in(st.session_state.auth_url)
else:
init_session_state()
account = auth_search_console(client_config, st.session_state.credentials)
properties = list_gsc_properties(st.session_state.credentials)
if properties:
webproperty = show_property_selector(properties, account)
search_type = show_search_type_selector()
date_range_selection = show_date_range_selector()
model_type = show_model_type_selector() # Add this line
if date_range_selection == 'Custom Range':
show_custom_date_inputs()
start_date, end_date = st.session_state.custom_start_date, st.session_state.custom_end_date
else:
start_date, end_date = calc_date_range(date_range_selection)
selected_dimensions = show_dimensions_selector(search_type)
if 'report_data' not in st.session_state:
st.session_state.report_data = None
if st.button("Fetch Data"):
with st.spinner('Fetching data...'):
st.session_state.report_data = fetch_data_loading(webproperty, search_type, start_date, end_date, selected_dimensions, model_type=model_type) # Update this line
if st.session_state.report_data is not None and not st.session_state.report_data.empty:
show_paginated_dataframe(st.session_state.report_data)
download_csv_link(st.session_state.report_data)
elif st.session_state.report_data is not None:
st.warning("No data found for the selected criteria.")
if __name__ == "__main__":
main() |