gscpro / app.py
poemsforaphrodite's picture
Update app.py
dcc6e39 verified
raw
history blame
18.9 kB
# Standard library imports
import datetime
import base64
import os
# Related third-party imports
import streamlit as st
from streamlit_elements import elements
from google_auth_oauthlib.flow import Flow
from googleapiclient.discovery import build
from dotenv import load_dotenv
import pandas as pd
import searchconsole
import cohere
from sklearn.metrics.pairwise import cosine_similarity
import requests
from bs4 import BeautifulSoup
load_dotenv()
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Initialize Cohere client
COHERE_API_KEY = os.environ["COHERE_API_KEY"]
co = cohere.Client(COHERE_API_KEY)
# Configuration: Set to True if running locally, False if running on Streamlit Cloud
IS_LOCAL = False
# Constants
SEARCH_TYPES = ["web", "image", "video", "news", "discover", "googleNews"]
DATE_RANGE_OPTIONS = [
"Last 7 Days",
"Last 30 Days",
"Last 3 Months",
"Last 6 Months",
"Last 12 Months",
"Last 16 Months",
"Custom Range"
]
DEVICE_OPTIONS = ["All Devices", "desktop", "mobile", "tablet"]
BASE_DIMENSIONS = ["page", "query", "country", "date"]
MAX_ROWS = 250_000
DF_PREVIEW_ROWS = 100
# -------------
# Streamlit App Configuration
# -------------
def setup_streamlit():
st.set_page_config(page_title="Keyword Relevance Test", layout="wide")
st.title("Keyword Relevance Test Using Vector Embedding")
st.divider()
def init_session_state():
if 'selected_property' not in st.session_state:
st.session_state.selected_property = None
if 'selected_search_type' not in st.session_state:
st.session_state.selected_search_type = 'web'
if 'selected_date_range' not in st.session_state:
st.session_state.selected_date_range = 'Last 7 Days'
if 'start_date' not in st.session_state:
st.session_state.start_date = datetime.date.today() - datetime.timedelta(days=7)
if 'end_date' not in st.session_state:
st.session_state.end_date = datetime.date.today()
if 'selected_dimensions' not in st.session_state:
st.session_state.selected_dimensions = ['page', 'query']
if 'selected_device' not in st.session_state:
st.session_state.selected_device = 'All Devices'
if 'custom_start_date' not in st.session_state:
st.session_state.custom_start_date = datetime.date.today() - datetime.timedelta(days=7)
if 'custom_end_date' not in st.session_state:
st.session_state.custom_end_date = datetime.date.today()
# -------------
# Data Processing Functions
# -------------
def fetch_content(url):
try:
response = requests.get(url)
response.raise_for_status()
soup = BeautifulSoup(response.text, 'html.parser')
content = soup.get_text(separator=' ', strip=True)
return content
except requests.RequestException as e:
return str(e)
def generate_embeddings(text_list, model_type):
if not text_list:
return []
model = 'embed-english-v3.0' if model_type == 'english' else 'embed-multilingual-v3.0'
input_type = 'search_document'
response = co.embed(model=model, texts=text_list, input_type=input_type)
embeddings = response.embeddings
return embeddings
def calculate_single_relevancy_score(page_content, query, model_type):
page_embedding = generate_embeddings([page_content], model_type)[0]
query_embedding = generate_embeddings([query], model_type)[0]
relevancy_score = cosine_similarity([query_embedding], [page_embedding])[0][0]
return relevancy_score
def process_gsc_data(df):
df_sorted = df.sort_values(['impressions'], ascending=[False])
df_unique = df_sorted.drop_duplicates(subset='page', keep='first')
result = df_unique[['page', 'query', 'clicks', 'impressions', 'ctr', 'position']]
result['relevancy_score'] = None # Initialize relevancy_score as None
return result
# -------------
# Google Authentication Functions
# -------------
def load_config():
client_config = {
"web": {
"client_id": os.environ["CLIENT_ID"],
"client_secret": os.environ["CLIENT_SECRET"],
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
"token_uri": "https://oauth2.googleapis.com/token",
"redirect_uris": ["https://poemsforaphrodite-gscpro.hf.space/"],
}
}
return client_config
def init_oauth_flow(client_config):
scopes = ["https://www.googleapis.com/auth/webmasters.readonly"]
flow = Flow.from_client_config(
client_config,
scopes=scopes,
redirect_uri=client_config["web"]["redirect_uris"][0]
)
return flow
def google_auth(client_config):
flow = init_oauth_flow(client_config)
auth_url, _ = flow.authorization_url(prompt="consent")
return flow, auth_url
def auth_search_console(client_config, credentials):
token = {
"token": credentials.token,
"refresh_token": credentials.refresh_token,
"token_uri": credentials.token_uri,
"client_id": credentials.client_id,
"client_secret": credentials.client_secret,
"scopes": credentials.scopes,
"id_token": getattr(credentials, "id_token", None),
}
return searchconsole.authenticate(client_config=client_config, credentials=token)
# -------------
# Data Fetching Functions
# -------------
def list_gsc_properties(credentials):
service = build('webmasters', 'v3', credentials=credentials)
site_list = service.sites().list().execute()
return [site['siteUrl'] for site in site_list.get('siteEntry', [])] or ["No properties found"]
def fetch_gsc_data(webproperty, search_type, start_date, end_date, dimensions, device_type=None):
query = webproperty.query.range(start_date, end_date).search_type(search_type).dimension(*dimensions)
if 'device' in dimensions and device_type and device_type != 'All Devices':
query = query.filter('device', 'equals', device_type.lower())
try:
df = query.limit(MAX_ROWS).get().to_dataframe()
return process_gsc_data(df)
except Exception as e:
show_error(e)
return pd.DataFrame()
def calculate_relevancy_scores(df, model_type):
with st.spinner('Calculating relevancy scores...'):
try:
page_contents = [fetch_content(url) for url in df['page']]
page_embeddings = generate_embeddings(page_contents, model_type)
query_embeddings = generate_embeddings(df['query'].tolist(), model_type)
relevancy_scores = cosine_similarity(query_embeddings, page_embeddings).diagonal()
df = df.assign(relevancy_score=relevancy_scores)
except Exception as e:
st.warning(f"Error calculating relevancy scores: {e}")
df = df.assign(relevancy_score=0)
return df
# -------------
# Utility Functions
# -------------
def update_dimensions(selected_search_type):
return BASE_DIMENSIONS + ['device'] if selected_search_type in SEARCH_TYPES else BASE_DIMENSIONS
def calc_date_range(selection, custom_start=None, custom_end=None):
range_map = {
'Last 7 Days': 7,
'Last 30 Days': 30,
'Last 3 Months': 90,
'Last 6 Months': 180,
'Last 12 Months': 365,
'Last 16 Months': 480
}
today = datetime.date.today()
if selection == 'Custom Range':
if custom_start and custom_end:
return custom_start, custom_end
else:
return today - datetime.timedelta(days=7), today
return today - datetime.timedelta(days=range_map.get(selection, 0)), today
def show_error(e):
st.error(f"An error occurred: {e}")
def property_change():
st.session_state.selected_property = st.session_state['selected_property_selector']
# -------------
# File & Download Operations
# -------------
def show_dataframe(report):
with st.expander("Preview the First 100 Rows (Unique Pages with Top Query)"):
st.dataframe(report.head(DF_PREVIEW_ROWS))
def download_csv_link(report):
def to_csv(df):
return df.to_csv(index=False, encoding='utf-8-sig')
csv = to_csv(report)
b64_csv = base64.b64encode(csv.encode()).decode()
href = f'<a href="data:file/csv;base64,{b64_csv}" download="search_console_data.csv">Download CSV File</a>'
st.markdown(href, unsafe_allow_html=True)
# -------------
# Streamlit UI Components
# -------------
def show_google_sign_in(auth_url):
with st.sidebar:
if st.button("Sign in with Google"):
st.write('Please click the link below to sign in:')
st.markdown(f'[Google Sign-In]({auth_url})', unsafe_allow_html=True)
def show_property_selector(properties, account):
selected_property = st.selectbox(
"Select a Search Console Property:",
properties,
index=properties.index(
st.session_state.selected_property) if st.session_state.selected_property in properties else 0,
key='selected_property_selector',
on_change=property_change
)
return account[selected_property]
def show_search_type_selector():
return st.selectbox(
"Select Search Type:",
SEARCH_TYPES,
index=SEARCH_TYPES.index(st.session_state.selected_search_type),
key='search_type_selector'
)
def show_model_type_selector():
return st.selectbox(
"Select the embedding model:",
["english", "multilingual"],
key='model_type_selector'
)
def show_date_range_selector():
return st.selectbox(
"Select Date Range:",
DATE_RANGE_OPTIONS,
index=DATE_RANGE_OPTIONS.index(st.session_state.selected_date_range),
key='date_range_selector'
)
def show_custom_date_inputs():
st.session_state.custom_start_date = st.date_input("Start Date", st.session_state.custom_start_date)
st.session_state.custom_end_date = st.date_input("End Date", st.session_state.custom_end_date)
def show_dimensions_selector(search_type):
available_dimensions = update_dimensions(search_type)
return st.multiselect(
"Select Dimensions:",
available_dimensions,
default=st.session_state.selected_dimensions,
key='dimensions_selector'
)
def show_paginated_dataframe(report, rows_per_page=20, model_type='english'):
# Check if required columns are present
required_columns = ['page', 'query', 'clicks', 'impressions', 'ctr', 'position']
missing_columns = [col for col in required_columns if col not in report.columns]
if missing_columns:
st.error(f"Error: The following required columns are missing from the data: {', '.join(missing_columns)}")
return report
report['position'] = report['position'].astype(int)
report['impressions'] = pd.to_numeric(report['impressions'], errors='coerce')
def format_ctr(x):
try:
return f"{float(x):.2%}"
except ValueError:
return x
def format_relevancy_score(x):
if x is None:
return '<button class="calculate-btn">Calculate</button>'
try:
return f"{float(x):.2f}"
except ValueError:
return x
report['ctr'] = report['ctr'].apply(format_ctr)
if 'relevancy_score' not in report.columns:
report['relevancy_score'] = None
report['relevancy_score'] = report['relevancy_score'].apply(format_relevancy_score)
def make_clickable(url):
return f'<a href="{url}" target="_blank">{url}</a>'
report['clickable_url'] = report['page'].apply(make_clickable)
columns = ['clickable_url', 'query', 'impressions', 'clicks', 'ctr', 'position', 'relevancy_score']
report = report[columns]
sort_column = st.selectbox("Sort by:", columns[1:], index=columns[1:].index('impressions'))
sort_order = st.radio("Sort order:", ("Descending", "Ascending"))
ascending = sort_order == "Ascending"
def safe_float_convert(x):
try:
return float(x.rstrip('%')) / 100 if isinstance(x, str) and x.endswith('%') else float(x)
except ValueError:
return 0
report['ctr_numeric'] = report['ctr'].apply(safe_float_convert)
report['relevancy_score_numeric'] = report['relevancy_score'].apply(lambda x: safe_float_convert(x) if x != '<button class="calculate-btn">Calculate</button>' else -1)
sort_column_numeric = sort_column + '_numeric' if sort_column in ['ctr', 'relevancy_score'] else sort_column
report = report.sort_values(by=sort_column_numeric, ascending=ascending)
report = report.drop(columns=['ctr_numeric', 'relevancy_score_numeric'])
total_rows = len(report)
total_pages = (total_rows - 1) // rows_per_page + 1
if 'current_page' not in st.session_state:
st.session_state.current_page = 1
col1, col2, col3 = st.columns([1,3,1])
with col1:
if st.button("Previous", disabled=st.session_state.current_page == 1):
st.session_state.current_page -= 1
with col2:
st.write(f"Page {st.session_state.current_page} of {total_pages}")
with col3:
if st.button("Next", disabled=st.session_state.current_page == total_pages):
st.session_state.current_page += 1
start_idx = (st.session_state.current_page - 1) * rows_per_page
end_idx = start_idx + rows_per_page
# Create a placeholder for the dataframe
dataframe_placeholder = st.empty()
# Function to update the dataframe
def update_dataframe():
df_html = report.iloc[start_idx:end_idx].to_html(escape=False, index=False)
df_html = df_html.replace('</table>', ''.join([
'<style>',
'.calculate-btn { cursor: pointer; padding: 5px 10px; background-color: #4CAF50; color: white; border: none; border-radius: 4px; }',
'.calculate-btn:hover { background-color: #45a049; }',
'</style>',
*[f'<script>document.getElementsByTagName("table")[0].rows[{i+1}].cells[6].onclick = function(e) {{ if(e.target.classList.contains("calculate-btn")) {{ Streamlit.setComponentValue("calculate_relevancy", {start_idx + i}); }} }}</script>'
for i in range(min(rows_per_page, len(report) - start_idx))]
]) + '</table>')
dataframe_placeholder.markdown(df_html, unsafe_allow_html=True)
# Initial dataframe display
update_dataframe()
# Handle relevancy calculation
if st.session_state.get('calculate_relevancy') is not None:
row_index = st.session_state.calculate_relevancy
logger.info(f"Calculating relevancy for row index: {row_index}")
try:
page_content = fetch_content(report.iloc[row_index]['page'])
query = report.iloc[row_index]['query']
relevancy_score = calculate_single_relevancy_score(page_content, query, model_type)
logger.info(f"Relevancy score calculated: {relevancy_score}")
report.at[row_index, 'relevancy_score'] = f"{relevancy_score:.2f}"
st.session_state.calculate_relevancy = None # Reset the state
update_dataframe() # Update the dataframe display
st.success(f"Relevancy score calculated for row {row_index + 1}")
except Exception as e:
logger.error(f"Error calculating relevancy score: {str(e)}")
st.error(f"Error calculating relevancy score: {str(e)}")
return report
# -------------
# Main Streamlit App Function
# -------------
def main():
logger.info("Starting the Streamlit app")
setup_streamlit()
client_config = load_config()
if 'auth_flow' not in st.session_state or 'auth_url' not in st.session_state:
logger.info("Initializing Google auth flow")
st.session_state.auth_flow, st.session_state.auth_url = google_auth(client_config)
# Directly access query parameters using st.query_params
query_params = st.query_params
# Retrieve the 'code' parameter
auth_code = query_params.get("code", None)
if auth_code and 'credentials' not in st.session_state:
logger.info("Fetching token with auth code")
st.session_state.auth_flow.fetch_token(code=auth_code)
st.session_state.credentials = st.session_state.auth_flow.credentials
logger.info("Credentials stored in session state")
if 'credentials' not in st.session_state:
logger.info("No credentials found, showing Google sign-in")
show_google_sign_in(st.session_state.auth_url)
else:
logger.info("Credentials found, initializing session state")
init_session_state()
account = auth_search_console(client_config, st.session_state.credentials)
properties = list_gsc_properties(st.session_state.credentials)
if properties:
logger.info(f"Found {len(properties)} properties")
webproperty = show_property_selector(properties, account)
search_type = show_search_type_selector()
date_range_selection = show_date_range_selector()
model_type = show_model_type_selector()
if date_range_selection == 'Custom Range':
show_custom_date_inputs()
start_date, end_date = st.session_state.custom_start_date, st.session_state.custom_end_date
else:
start_date, end_date = calc_date_range(date_range_selection)
selected_dimensions = show_dimensions_selector(search_type)
if 'report_data' not in st.session_state:
st.session_state.report_data = None
if st.button("Fetch Data"):
with st.spinner('Fetching data...'):
logger.info(f"Fetching GSC data for {webproperty} from {start_date} to {end_date}")
st.session_state.report_data = fetch_gsc_data(webproperty, search_type, start_date, end_date, selected_dimensions)
logger.info(f"Data fetched: {len(st.session_state.report_data)} rows")
if st.session_state.report_data is not None and not st.session_state.report_data.empty:
logger.info("Displaying fetched data")
st.write("Data fetched successfully. Click the 'Calculate' button in the Relevancy Score column to calculate the score for each row.")
st.session_state.report_data = show_paginated_dataframe(st.session_state.report_data, model_type=model_type)
download_csv_link(st.session_state.report_data)
elif st.session_state.report_data is not None:
logger.warning("No data found for the selected criteria")
st.warning("No data found for the selected criteria.")
else:
logger.warning("No properties found for the account")
st.warning("No properties found for your Google Search Console account.")
if __name__ == "__main__":
logger.info("Application started")
main()