# Standard library imports import datetime import base64 import os # Related third-party imports import streamlit as st from streamlit_elements import elements from google_auth_oauthlib.flow import Flow from googleapiclient.discovery import build from dotenv import load_dotenv import pandas as pd import searchconsole import cohere from sklearn.metrics.pairwise import cosine_similarity import requests import logging from bs4 import BeautifulSoup load_dotenv() # Set up logging logging.basicConfig( level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', stream=sys.stdout # This will ensure the logs are captured by Hugging Face ) logger = logging.getLogger(__name__) # Explicitly set Streamlit's logger to INFO level st.logger.setLevel(logging.INFO) # Initialize Cohere client COHERE_API_KEY = os.environ["COHERE_API_KEY"] co = cohere.Client(COHERE_API_KEY) # Configuration: Set to True if running locally, False if running on Streamlit Cloud IS_LOCAL = False # Constants SEARCH_TYPES = ["web", "image", "video", "news", "discover", "googleNews"] DATE_RANGE_OPTIONS = [ "Last 7 Days", "Last 30 Days", "Last 3 Months", "Last 6 Months", "Last 12 Months", "Last 16 Months", "Custom Range" ] DEVICE_OPTIONS = ["All Devices", "desktop", "mobile", "tablet"] BASE_DIMENSIONS = ["page", "query", "country", "date"] MAX_ROWS = 250_000 DF_PREVIEW_ROWS = 100 # ------------- # Streamlit App Configuration # ------------- def setup_streamlit(): st.set_page_config(page_title="Keyword Relevance Test", layout="wide") st.title("Keyword Relevance Test Using Vector Embedding") st.divider() def init_session_state(): if 'selected_property' not in st.session_state: st.session_state.selected_property = None if 'selected_search_type' not in st.session_state: st.session_state.selected_search_type = 'web' if 'selected_date_range' not in st.session_state: st.session_state.selected_date_range = 'Last 7 Days' if 'start_date' not in st.session_state: st.session_state.start_date = datetime.date.today() - datetime.timedelta(days=7) if 'end_date' not in st.session_state: st.session_state.end_date = datetime.date.today() if 'selected_dimensions' not in st.session_state: st.session_state.selected_dimensions = ['page', 'query'] if 'selected_device' not in st.session_state: st.session_state.selected_device = 'All Devices' if 'custom_start_date' not in st.session_state: st.session_state.custom_start_date = datetime.date.today() - datetime.timedelta(days=7) if 'custom_end_date' not in st.session_state: st.session_state.custom_end_date = datetime.date.today() # ------------- # Data Processing Functions # ------------- def fetch_content(url): try: response = requests.get(url) response.raise_for_status() soup = BeautifulSoup(response.text, 'html.parser') content = soup.get_text(separator=' ', strip=True) return content except requests.RequestException as e: return str(e) def generate_embeddings(text_list, model_type): if not text_list: return [] model = 'embed-english-v3.0' if model_type == 'english' else 'embed-multilingual-v3.0' input_type = 'search_document' response = co.embed(model=model, texts=text_list, input_type=input_type) embeddings = response.embeddings return embeddings def calculate_single_relevancy_score(page_content, query, model_type): page_embedding = generate_embeddings([page_content], model_type)[0] query_embedding = generate_embeddings([query], model_type)[0] relevancy_score = cosine_similarity([query_embedding], [page_embedding])[0][0] return relevancy_score def process_gsc_data(df): df_sorted = df.sort_values(['impressions'], ascending=[False]) df_unique = df_sorted.drop_duplicates(subset='page', keep='first') result = df_unique[['page', 'query', 'clicks', 'impressions', 'ctr', 'position']] result['relevancy_score'] = None # Initialize relevancy_score as None return result # ------------- # Google Authentication Functions # ------------- def load_config(): client_config = { "web": { "client_id": os.environ["CLIENT_ID"], "client_secret": os.environ["CLIENT_SECRET"], "auth_uri": "https://accounts.google.com/o/oauth2/auth", "token_uri": "https://oauth2.googleapis.com/token", "redirect_uris": ["https://poemsforaphrodite-gscpro.hf.space/"], } } return client_config def init_oauth_flow(client_config): scopes = ["https://www.googleapis.com/auth/webmasters.readonly"] flow = Flow.from_client_config( client_config, scopes=scopes, redirect_uri=client_config["web"]["redirect_uris"][0] ) return flow def google_auth(client_config): flow = init_oauth_flow(client_config) auth_url, _ = flow.authorization_url(prompt="consent") return flow, auth_url def auth_search_console(client_config, credentials): token = { "token": credentials.token, "refresh_token": credentials.refresh_token, "token_uri": credentials.token_uri, "client_id": credentials.client_id, "client_secret": credentials.client_secret, "scopes": credentials.scopes, "id_token": getattr(credentials, "id_token", None), } return searchconsole.authenticate(client_config=client_config, credentials=token) # ------------- # Data Fetching Functions # ------------- def list_gsc_properties(credentials): service = build('webmasters', 'v3', credentials=credentials) site_list = service.sites().list().execute() return [site['siteUrl'] for site in site_list.get('siteEntry', [])] or ["No properties found"] def fetch_gsc_data(webproperty, search_type, start_date, end_date, dimensions, device_type=None): query = webproperty.query.range(start_date, end_date).search_type(search_type).dimension(*dimensions) if 'device' in dimensions and device_type and device_type != 'All Devices': query = query.filter('device', 'equals', device_type.lower()) try: df = query.limit(MAX_ROWS).get().to_dataframe() return process_gsc_data(df) except Exception as e: show_error(e) return pd.DataFrame() def calculate_relevancy_scores(df, model_type): with st.spinner('Calculating relevancy scores...'): try: page_contents = [fetch_content(url) for url in df['page']] page_embeddings = generate_embeddings(page_contents, model_type) query_embeddings = generate_embeddings(df['query'].tolist(), model_type) relevancy_scores = cosine_similarity(query_embeddings, page_embeddings).diagonal() df = df.assign(relevancy_score=relevancy_scores) except Exception as e: st.warning(f"Error calculating relevancy scores: {e}") df = df.assign(relevancy_score=0) return df # ------------- # Utility Functions # ------------- def update_dimensions(selected_search_type): return BASE_DIMENSIONS + ['device'] if selected_search_type in SEARCH_TYPES else BASE_DIMENSIONS def calc_date_range(selection, custom_start=None, custom_end=None): range_map = { 'Last 7 Days': 7, 'Last 30 Days': 30, 'Last 3 Months': 90, 'Last 6 Months': 180, 'Last 12 Months': 365, 'Last 16 Months': 480 } today = datetime.date.today() if selection == 'Custom Range': if custom_start and custom_end: return custom_start, custom_end else: return today - datetime.timedelta(days=7), today return today - datetime.timedelta(days=range_map.get(selection, 0)), today def show_error(e): st.error(f"An error occurred: {e}") def property_change(): st.session_state.selected_property = st.session_state['selected_property_selector'] # ------------- # File & Download Operations # ------------- def show_dataframe(report): with st.expander("Preview the First 100 Rows (Unique Pages with Top Query)"): st.dataframe(report.head(DF_PREVIEW_ROWS)) def download_csv_link(report): def to_csv(df): return df.to_csv(index=False, encoding='utf-8-sig') csv = to_csv(report) b64_csv = base64.b64encode(csv.encode()).decode() href = f'Download CSV File' st.markdown(href, unsafe_allow_html=True) # ------------- # Streamlit UI Components # ------------- def show_google_sign_in(auth_url): with st.sidebar: if st.button("Sign in with Google"): st.write('Please click the link below to sign in:') st.markdown(f'[Google Sign-In]({auth_url})', unsafe_allow_html=True) def show_property_selector(properties, account): selected_property = st.selectbox( "Select a Search Console Property:", properties, index=properties.index( st.session_state.selected_property) if st.session_state.selected_property in properties else 0, key='selected_property_selector', on_change=property_change ) return account[selected_property] def show_search_type_selector(): return st.selectbox( "Select Search Type:", SEARCH_TYPES, index=SEARCH_TYPES.index(st.session_state.selected_search_type), key='search_type_selector' ) def show_model_type_selector(): return st.selectbox( "Select the embedding model:", ["english", "multilingual"], key='model_type_selector' ) def show_date_range_selector(): return st.selectbox( "Select Date Range:", DATE_RANGE_OPTIONS, index=DATE_RANGE_OPTIONS.index(st.session_state.selected_date_range), key='date_range_selector' ) def show_custom_date_inputs(): st.session_state.custom_start_date = st.date_input("Start Date", st.session_state.custom_start_date) st.session_state.custom_end_date = st.date_input("End Date", st.session_state.custom_end_date) def show_dimensions_selector(search_type): available_dimensions = update_dimensions(search_type) return st.multiselect( "Select Dimensions:", available_dimensions, default=st.session_state.selected_dimensions, key='dimensions_selector' ) def show_paginated_dataframe(report, rows_per_page=20, model_type='english'): # Check if required columns are present required_columns = ['page', 'query', 'clicks', 'impressions', 'ctr', 'position'] missing_columns = [col for col in required_columns if col not in report.columns] if missing_columns: st.error(f"Error: The following required columns are missing from the data: {', '.join(missing_columns)}") return report report['position'] = report['position'].astype(int) report['impressions'] = pd.to_numeric(report['impressions'], errors='coerce') def format_ctr(x): try: return f"{float(x):.2%}" except ValueError: return x def format_relevancy_score(x): if x is None: return '' try: return f"{float(x):.2f}" except ValueError: return x report['ctr'] = report['ctr'].apply(format_ctr) if 'relevancy_score' not in report.columns: report['relevancy_score'] = None report['relevancy_score'] = report['relevancy_score'].apply(format_relevancy_score) def make_clickable(url): return f'{url}' report['clickable_url'] = report['page'].apply(make_clickable) columns = ['clickable_url', 'query', 'impressions', 'clicks', 'ctr', 'position', 'relevancy_score'] report = report[columns] sort_column = st.selectbox("Sort by:", columns[1:], index=columns[1:].index('impressions')) sort_order = st.radio("Sort order:", ("Descending", "Ascending")) ascending = sort_order == "Ascending" def safe_float_convert(x): try: return float(x.rstrip('%')) / 100 if isinstance(x, str) and x.endswith('%') else float(x) except ValueError: return 0 report['ctr_numeric'] = report['ctr'].apply(safe_float_convert) report['relevancy_score_numeric'] = report['relevancy_score'].apply(lambda x: safe_float_convert(x) if x != '' else -1) sort_column_numeric = sort_column + '_numeric' if sort_column in ['ctr', 'relevancy_score'] else sort_column report = report.sort_values(by=sort_column_numeric, ascending=ascending) report = report.drop(columns=['ctr_numeric', 'relevancy_score_numeric']) total_rows = len(report) total_pages = (total_rows - 1) // rows_per_page + 1 if 'current_page' not in st.session_state: st.session_state.current_page = 1 col1, col2, col3 = st.columns([1,3,1]) with col1: if st.button("Previous", disabled=st.session_state.current_page == 1): st.session_state.current_page -= 1 with col2: st.write(f"Page {st.session_state.current_page} of {total_pages}") with col3: if st.button("Next", disabled=st.session_state.current_page == total_pages): st.session_state.current_page += 1 start_idx = (st.session_state.current_page - 1) * rows_per_page end_idx = start_idx + rows_per_page # Create a placeholder for the dataframe dataframe_placeholder = st.empty() # Function to update the dataframe def update_dataframe(): df_html = report.iloc[start_idx:end_idx].to_html(escape=False, index=False) df_html = df_html.replace('', ''.join([ '', *[f'' for i in range(min(rows_per_page, len(report) - start_idx))] ]) + '') dataframe_placeholder.markdown(df_html, unsafe_allow_html=True) # Initial dataframe display update_dataframe() # Handle relevancy calculation if st.session_state.get('calculate_relevancy') is not None: row_index = st.session_state.calculate_relevancy logger.info(f"Calculating relevancy for row index: {row_index}") try: page_content = fetch_content(report.iloc[row_index]['page']) query = report.iloc[row_index]['query'] relevancy_score = calculate_single_relevancy_score(page_content, query, model_type) logger.info(f"Relevancy score calculated: {relevancy_score}") report.at[row_index, 'relevancy_score'] = f"{relevancy_score:.2f}" st.session_state.calculate_relevancy = None # Reset the state update_dataframe() # Update the dataframe display st.success(f"Relevancy score calculated for row {row_index + 1}") except Exception as e: logger.error(f"Error calculating relevancy score: {str(e)}") st.error(f"Error calculating relevancy score: {str(e)}") return report # ------------- # Main Streamlit App Function # ------------- def main(): logger.info("Starting the Streamlit app") setup_streamlit() client_config = load_config() if 'auth_flow' not in st.session_state or 'auth_url' not in st.session_state: logger.info("Initializing Google auth flow") st.session_state.auth_flow, st.session_state.auth_url = google_auth(client_config) # Directly access query parameters using st.query_params query_params = st.query_params # Retrieve the 'code' parameter auth_code = query_params.get("code", None) if auth_code and 'credentials' not in st.session_state: logger.info("Fetching token with auth code") st.session_state.auth_flow.fetch_token(code=auth_code) st.session_state.credentials = st.session_state.auth_flow.credentials logger.info("Credentials stored in session state") if 'credentials' not in st.session_state: logger.info("No credentials found, showing Google sign-in") show_google_sign_in(st.session_state.auth_url) else: logger.info("Credentials found, initializing session state") init_session_state() account = auth_search_console(client_config, st.session_state.credentials) properties = list_gsc_properties(st.session_state.credentials) if properties: logger.info(f"Found {len(properties)} properties") webproperty = show_property_selector(properties, account) search_type = show_search_type_selector() date_range_selection = show_date_range_selector() model_type = show_model_type_selector() if date_range_selection == 'Custom Range': show_custom_date_inputs() start_date, end_date = st.session_state.custom_start_date, st.session_state.custom_end_date else: start_date, end_date = calc_date_range(date_range_selection) selected_dimensions = show_dimensions_selector(search_type) if 'report_data' not in st.session_state: st.session_state.report_data = None if st.button("Fetch Data"): with st.spinner('Fetching data...'): logger.info(f"Fetching GSC data for {webproperty} from {start_date} to {end_date}") st.session_state.report_data = fetch_gsc_data(webproperty, search_type, start_date, end_date, selected_dimensions) logger.info(f"Data fetched: {len(st.session_state.report_data)} rows") if st.session_state.report_data is not None and not st.session_state.report_data.empty: logger.info("Displaying fetched data") st.write("Data fetched successfully. Click the 'Calculate' button in the Relevancy Score column to calculate the score for each row.") st.session_state.report_data = show_paginated_dataframe(st.session_state.report_data, model_type=model_type) download_csv_link(st.session_state.report_data) elif st.session_state.report_data is not None: logger.warning("No data found for the selected criteria") st.warning("No data found for the selected criteria.") else: logger.warning("No properties found for the account") st.warning("No properties found for your Google Search Console account.") if __name__ == "__main__": logger.info("Application started") main()