Spaces:
Runtime error
Runtime error
import os | |
import streamlit as st | |
from openai import OpenAI | |
from PyPDF2 import PdfReader | |
from pinecone import Pinecone | |
import uuid | |
from dotenv import load_dotenv | |
import time | |
from concurrent.futures import ThreadPoolExecutor, as_completed | |
load_dotenv() | |
# Set up OpenAI client | |
client = OpenAI(api_key=os.getenv("OPENAI_API_KEY")) | |
# Set up Pinecone | |
pc = Pinecone(api_key=os.getenv("PINECONE_API_KEY")) | |
index_name = "main" # Your index name | |
index = pc.Index(index_name) | |
def get_embedding(text): | |
response = client.embeddings.create(input=text, model="text-embedding-3-large") | |
return response.data[0].embedding | |
def process_pdf(file): | |
reader = PdfReader(file) | |
text = "" | |
for page in reader.pages: | |
text += page.extract_text() + "\n" | |
return text | |
def process_upload(upload_type, file_or_link, file_name=None): | |
print(f"Starting process_upload for {upload_type}") | |
doc_id = str(uuid.uuid4()) | |
print(f"Generated doc_id: {doc_id}") | |
if upload_type == "PDF": | |
content = process_pdf(file_or_link) | |
doc_name = file_name or "Uploaded PDF" | |
else: | |
print("Invalid upload type") | |
return "Invalid upload type" | |
content_length = len(content) | |
print(f"Content extracted, length: {content_length}") | |
# Dynamically adjust chunk size based on content length | |
if content_length < 10000: | |
chunk_size = 1000 | |
elif content_length < 100000: | |
chunk_size = 2000 | |
else: | |
chunk_size = 4000 | |
print(f"Using chunk size: {chunk_size}") | |
chunks = [content[i:i+chunk_size] for i in range(0, content_length, chunk_size)] | |
vectors = [] | |
with ThreadPoolExecutor() as executor: | |
futures = [executor.submit(process_chunk, chunk, doc_id, i, upload_type, doc_name) for i, chunk in enumerate(chunks)] | |
for future in as_completed(futures): | |
vectors.append(future.result()) | |
# Update progress | |
progress = len(vectors) / len(chunks) | |
st.session_state.upload_progress.progress(progress) | |
print(f"Generated {len(vectors)} vectors") | |
index.upsert(vectors=vectors) | |
print("Vectors upserted to Pinecone") | |
return f"Processing complete for {upload_type}. Document Name: {doc_name}" | |
def process_chunk(chunk, doc_id, i, upload_type, doc_name): | |
embedding = get_embedding(chunk) | |
return (f"{doc_id}_{i}", embedding, { | |
"text": chunk, | |
"type": upload_type, | |
"doc_id": doc_id, | |
"doc_name": doc_name, | |
"chunk_index": i | |
}) | |
def get_relevant_context(query, top_k=5): | |
print(f"Getting relevant context for query: {query}") | |
query_embedding = get_embedding(query) | |
search_results = index.query(vector=query_embedding, top_k=top_k, include_metadata=True) | |
print(f"Found {len(search_results['matches'])} relevant results") | |
# Sort results by doc_id and chunk_index to maintain document structure | |
sorted_results = sorted(search_results['matches'], key=lambda x: (x['metadata']['doc_id'], x['metadata']['chunk_index'])) | |
context = "\n".join([result['metadata']['text'] for result in sorted_results]) | |
return context, sorted_results | |
def chat_with_ai(message): | |
print(f"Chatting with AI, message: {message}") | |
context, results = get_relevant_context(message) | |
print(f"Retrieved context, length: {len(context)}") | |
messages = [ | |
{"role": "system", "content": "You are a helpful assistant. Use the following information to answer the user's question, but don't mention the context directly in your response. If the information isn't in the context, say you don't know."}, | |
{"role": "system", "content": f"Context: {context}"}, | |
{"role": "user", "content": message} | |
] | |
response = client.chat.completions.create( | |
model="gpt-4o-mini", | |
messages=messages | |
) | |
print("Received response from OpenAI") | |
ai_response = response.choices[0].message.content | |
# Prepare source information | |
sources = [ | |
{ | |
"doc_id": result['metadata']['doc_id'], | |
"doc_name": result['metadata']['doc_name'], | |
"chunk_index": result['metadata']['chunk_index'], | |
"text": result['metadata']['text'], | |
"type": result['metadata']['type'] | |
} | |
for result in results | |
] | |
return ai_response, sources | |
def clear_database(): | |
print("Clearing database...") | |
index.delete(delete_all=True) | |
print("Database cleared") | |
return "Database cleared successfully." | |
# Streamlit UI | |
st.set_page_config(layout="wide") | |
st.title("Upload and Chat with PDFs") | |
# Create three columns | |
col1, col2, col3 = st.columns([1, 1, 1]) | |
with col1: | |
st.header("Upload") | |
# PDF upload | |
uploaded_file = st.file_uploader("Choose a PDF file", type="pdf") | |
if st.button("Process All"): | |
st.session_state.upload_progress = st.progress(0) | |
with st.spinner("Processing uploads..."): | |
results = [] | |
if uploaded_file: | |
pdf_result = process_upload("PDF", uploaded_file, uploaded_file.name) | |
results.append(pdf_result) | |
if results: | |
for result in results: | |
st.success(result) | |
else: | |
st.warning("No content uploaded. Please provide at least one input.") | |
st.session_state.upload_progress.empty() | |
if st.button("Clear Database"): | |
result = clear_database() | |
st.success(result) | |
with col2: | |
st.header("Chat") | |
user_input = st.text_input("Ask a question about the uploaded content:") | |
if st.button("Send"): | |
if user_input: | |
print(f"Sending user input: {user_input}") | |
st.session_state.chat_progress = st.progress(0) | |
response, sources = chat_with_ai(user_input) | |
st.session_state.chat_progress.progress(1.0) | |
st.markdown("**You:** " + user_input) | |
st.markdown("**AI:** " + response) | |
# Store sources in session state for display in col3 | |
st.session_state.sources = sources | |
st.session_state.chat_progress.empty() | |
else: | |
print("Empty user input") | |
st.warning("Please enter a question.") | |
with col3: | |
st.header("Source Chunks") | |
if 'sources' in st.session_state and st.session_state.sources: | |
for i, source in enumerate(st.session_state.sources, 1): | |
with st.expander(f"Source {i} - {source['type']} ({source['doc_name']})"): | |
st.markdown(f"**Chunk Index:** {source['chunk_index']}") | |
st.text(source['text']) | |
else: | |
st.info("Ask a question to see source chunks here.") |