pojitha's picture
Update app.py
f10acc7
raw
history blame
4.27 kB
import numpy
from sklearn.pipeline import Pipeline
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score
import pandas as pd
import numpy as np
import streamlit as st
df1 = pd.read_csv('sinhala-hate-speech-dataset.csv')
df2 = pd.read_csv('Sinhala_Singlish_Hate_Speech.csv')
df2.columns= ["id","comment","label"]
df2['label'] = df2['label'].apply(lambda x: 1 if x == "YES" else 0)
df = pd.concat([df1, df2], sort=False)
df.isnull().sum()
import re
exclude = set(",.:;'\"-?!/´`%")
def remove_punctutation(text):
return ''.join([(i if i not in exclude else " ") for i in text])
def remove_numbers(text):
return ''.join(c for c in text if not c.isnumeric())
df['clean_data'] = df['comment'].apply(lambda x: remove_punctutation((x)))
df['cleand'] = df['clean_data'].apply(lambda x: remove_numbers(x))
import nltk
from nltk.tokenize import word_tokenize
nltk.download('punkt')
df['tokens'] = df['cleand'].apply(word_tokenize)
with open("StopWords_425.txt", "r",encoding="utf-16") as file:
# Read the contents of the file
contents = file.read()
stop_word = contents.split()
stop_word = [word for word in stop_word if not any(char.isdigit() for char in word)]
print(stop_word)
df['tokens'] = df['tokens'].apply(lambda x: [item for item in x if item not in stop_word])
import nltk
from nltk.tokenize import word_tokenize
with open('Suffixes-413.txt', 'r', encoding='utf-16') as f:
stemmed_words = f.readlines()
stemmed_words = [word for word in stemmed_words if not any(char.isdigit() for char in word)]
stemmed_words = [word.strip() for word in stemmed_words]
stemmed_words = set(stemmed_words)
def stem_word(word):
if word in stemmed_words:
return word
else:
return nltk.stem.PorterStemmer().stem(word)
df['cleaneddata'] = df['tokens'].apply(lambda x: [stem_word(word) for word in x])
pipeline = Pipeline([
('tfidf', TfidfVectorizer(stop_words=stop_word, token_pattern=r'\b\w+\b')),
('svm', SVC())
])
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(df['comment'], df['label'], test_size=0.3)
pipeline.fit(X_train, y_train)
st.title("Sinhala Hate Speech Identifier")
st.markdown("This NLP model still on training process, Please give true values.")
st.markdown("Please refresh the page, before enter the new sentence. Thank you")
# Define the user input section
user_input = st.text_input("Enter a sentence")
# Define the model output section
if user_input:
# Check if the sentence is hate or not
user_pred = pipeline.predict([user_input])[0]
if user_pred == 1:
st.write("This sentence is hate.")
add_to_df = st.selectbox("Is this correct?", ["Choose a Option","Yes", "No"],index=0)
if add_to_df == "Yes":
st.write("Thank you")
else:
processed_text = pd.Series(user_input)
df = df.append({'comment': user_input, 'label': 0}, ignore_index=True)
df.to_csv("sinhala-hate-speech-dataset", index=False)
X_train, X_test, y_train, y_test = train_test_split(df['comment'], df['label'], test_size=0.3)
X_train = X_train.append(processed_text, ignore_index=True)
y_train = y_train.append(pd.Series([0]))
pipeline.fit(X_train, y_train)
st.write("Thank you for your contribution. We added that word into our system.")
else:
st.write("This sentence is not hate.")
add_to_df = st.selectbox("Is this correct?", ["Choose a Option","Yes", "No"],index=0)
if add_to_df == "Yes":
st.write("Thank you")
else:
processed_text = pd.Series(user_input)
df = df.append({'comment': user_input, 'label': 1}, ignore_index=True)
df.to_csv("sinhala-hate-speech-dataset.csv",index=True)
X_train, X_test, y_train, y_test = train_test_split(df['comment'], df['label'], test_size=0.3)
X_train = X_train.append(processed_text, ignore_index=True)
y_train = y_train.append(pd.Series([1]))
pipeline.fit(X_train, y_train)
st.write("Thank you for your contribution. We added that word into our system.")