import numpy from sklearn.pipeline import Pipeline from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.svm import SVC from sklearn.metrics import accuracy_score import pandas as pd import numpy as np import streamlit as st df1 = pd.read_csv('sinhala-hate-speech-dataset.csv') df2 = pd.read_csv('Sinhala_Singlish_Hate_Speech.csv') df2.columns= ["id","comment","label"] df2['label'] = df2['label'].apply(lambda x: 1 if x == "YES" else 0) df = pd.concat([df1, df2], sort=False) df.isnull().sum() import re exclude = set(",.:;'\"-?!/ยด`%") def remove_punctutation(text): return ''.join([(i if i not in exclude else " ") for i in text]) def remove_numbers(text): return ''.join(c for c in text if not c.isnumeric()) df['clean_data'] = df['comment'].apply(lambda x: remove_punctutation((x))) df['cleand'] = df['clean_data'].apply(lambda x: remove_numbers(x)) import nltk from nltk.tokenize import word_tokenize nltk.download('punkt') df['tokens'] = df['cleand'].apply(word_tokenize) with open("StopWords_425.txt", "r",encoding="utf-16") as file: # Read the contents of the file contents = file.read() stop_word = contents.split() stop_word = [word for word in stop_word if not any(char.isdigit() for char in word)] print(stop_word) df['tokens'] = df['tokens'].apply(lambda x: [item for item in x if item not in stop_word]) import nltk from nltk.tokenize import word_tokenize with open('Suffixes-413.txt', 'r', encoding='utf-16') as f: stemmed_words = f.readlines() stemmed_words = [word for word in stemmed_words if not any(char.isdigit() for char in word)] stemmed_words = [word.strip() for word in stemmed_words] stemmed_words = set(stemmed_words) def stem_word(word): if word in stemmed_words: return word else: return nltk.stem.PorterStemmer().stem(word) df['cleaneddata'] = df['tokens'].apply(lambda x: [stem_word(word) for word in x]) pipeline = Pipeline([ ('tfidf', TfidfVectorizer(stop_words=stop_word, token_pattern=r'\b\w+\b')), ('svm', SVC()) ]) from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(df['comment'], df['label'], test_size=0.3) pipeline.fit(X_train, y_train) st.title("Sinhala Hate Speech Identifier") st.markdown("This NLP model still on training process, Please give true values.") st.markdown("Please refresh the page, before enter the new sentence. Thank you") # Define the user input section user_input = st.text_input("Enter a sentence") # Define the model output section if user_input: # Check if the sentence is hate or not user_pred = pipeline.predict([user_input])[0] if user_pred == 1: st.write("This sentence is hate.") add_to_df = st.selectbox("Is this correct?", ["Choose a Option","Yes", "No"],index=0) if add_to_df == "Yes": st.write("Thank you") else: processed_text = pd.Series(user_input) df = df.append({'comment': user_input, 'label': 0}, ignore_index=True) df.to_csv("sinhala-hate-speech-dataset", index=False) X_train, X_test, y_train, y_test = train_test_split(df['comment'], df['label'], test_size=0.3) X_train = X_train.append(processed_text, ignore_index=True) y_train = y_train.append(pd.Series([0])) pipeline.fit(X_train, y_train) st.write("Thank you for your contribution. We added that word into our system.") else: st.write("This sentence is not hate.") add_to_df = st.selectbox("Is this correct?", ["Choose a Option","Yes", "No"],index=0) if add_to_df == "Yes": st.write("Thank you") else: processed_text = pd.Series(user_input) df = df.append({'comment': user_input, 'label': 1}, ignore_index=True) df.to_csv("sinhala-hate-speech-dataset.csv",index=True) X_train, X_test, y_train, y_test = train_test_split(df['comment'], df['label'], test_size=0.3) X_train = X_train.append(processed_text, ignore_index=True) y_train = y_train.append(pd.Series([1])) pipeline.fit(X_train, y_train) st.write("Thank you for your contribution. We added that word into our system.")