Spaces:
Runtime error
Runtime error
File size: 5,190 Bytes
3370ff8 7cc09fd 3370ff8 074be6a 3370ff8 8a67e15 3370ff8 8a67e15 3370ff8 7f7eaee 3370ff8 074be6a 8a67e15 074be6a 3370ff8 7923a1c 3370ff8 7f7eaee 3370ff8 f5a0872 cb1656e 3370ff8 9abbc70 3370ff8 074be6a 3370ff8 9abbc70 3370ff8 9abbc70 3370ff8 074be6a 3370ff8 074be6a 340429d 3370ff8 1e694a8 340429d 1e694a8 340429d 1e694a8 7f7eaee 3370ff8 0592643 3370ff8 7f7eaee 3370ff8 cb1656e 3370ff8 9abbc70 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
import pathlib
from constants import MODELS_REPO, MODELS_NAMES
import gradio as gr
import torch
from transformers import (AutoFeatureExtractor, DetrForObjectDetection,)
from visualization import visualize_attention_map, visualize_prediction
from style import css, description, title
from PIL import Image
def make_prediction(img, feature_extractor, model):
inputs = feature_extractor(img, return_tensors="pt")
outputs = model(**inputs)
img_size = torch.tensor([tuple(reversed(img.size))])
processed_outputs = feature_extractor.post_process(outputs, img_size)
print(outputs.keys())
return (
processed_outputs[0],
outputs["decoder_attentions"],
outputs["encoder_attentions"],
outputs["cross_attentions"],
)
def detect_objects(model_name, image_input, threshold, display_mask=False, img_input_mask=None):
feature_extractor = AutoFeatureExtractor.from_pretrained(MODELS_REPO[model_name])
print("Set threshold to: ", threshold)
if "DETR" in model_name:
model = DetrForObjectDetection.from_pretrained(MODELS_REPO[model_name])
model_details = "DETR details"
(
processed_outputs,
decoder_attention_map,
encoder_attention_map,
cross_attention_map,
) = make_prediction(image_input, feature_extractor, model)
if display_mask:
mask_pil_image = img_input_mask
viz_img = visualize_prediction(
pil_img=image_input,
output_dict=processed_outputs,
threshold=threshold,
id2label=model.config.id2label,
display_mask=display_mask,
mask=mask_pil_image
)
decoder_attention_map_img = visualize_attention_map(
image_input, decoder_attention_map
)
encoder_attention_map_img = visualize_attention_map(
image_input, encoder_attention_map
)
cross_attention_map_img = visualize_attention_map(image_input, cross_attention_map)
return (
viz_img,
decoder_attention_map_img,
encoder_attention_map_img,
cross_attention_map_img,
model_details
)
def set_example_image(example: list):
return gr.Image.update(value=example[0])
with gr.Blocks(css=css) as app:
gr.Markdown(title)
gr.Markdown(description)
with gr.Tabs():
with gr.TabItem("Image upload and detections visualization"):
with gr.Row():
with gr.Column():
img_input = gr.Image(type="pil")
img_input_mask = gr.Image(type="pil", visible=False)
with gr.Column():
options = gr.Dropdown(
value=MODELS_NAMES[0],
choices=MODELS_NAMES,
label="Select an object detection model",
show_label=True,
)
with gr.Row():
with gr.Column():
slider_input = gr.Slider(
minimum=0.2, maximum=1, value=0.7, label="Prediction threshold"
)
with gr.Column():
display_mask = gr.Checkbox(
label="Display masks", default=False
)
detect_button = gr.Button("Detect leukocytes")
with gr.Row():
example_images = gr.Dataset(
components=[img_input, img_input_mask],
samples=[
[path.as_posix(), path.as_posix().replace("_HE", "_mask")]
for path in sorted(
pathlib.Path("cd45rb_test_imgs").rglob("*_HE.png")
)
],
)
with gr.Row():
with gr.Column():
gr.Markdown(
"""The selected image with detected bounding boxes by the model"""
)
img_output_from_upload = gr.Image(shape=(850, 850))
with gr.TabItem("Attentions visualization"):
gr.Markdown("""Encoder attentions""")
with gr.Row():
encoder_att_map_output = gr.Image(shape=(850, 850))
gr.Markdown("""Decoder attentions""")
with gr.Row():
decoder_att_map_output = gr.Image(shape=(850, 850))
gr.Markdown("""Cross attentions""")
with gr.Row():
cross_att_map_output = gr.Image(shape=(850, 850))
with gr.TabItem("Model details"):
with gr.Row():
model_details = gr.Markdown(""" """)
detect_button.click(
detect_objects,
inputs=[options, img_input, slider_input, display_mask, img_input_mask],
outputs=[
img_output_from_upload,
decoder_att_map_output,
encoder_att_map_output,
cross_att_map_output,
model_details,
],
queue=True,
)
example_images.click(
fn=set_example_image, inputs=[example_images], outputs=[img_input]
)
app.launch(enable_queue=True)
|