vicellst-att / visualization.py
polejowska's picture
Duplicate from polejowska/vicellst-attention
3370ff8
raw
history blame
1.74 kB
from matplotlib import pyplot as plt
import torch
import torch.nn.functional as F
from constants import COLORS
from utils import fig2img
def visualize_prediction(
pil_img, output_dict, threshold=0.7, id2label=None
):
keep = output_dict["scores"] > threshold
boxes = output_dict["boxes"][keep].tolist()
scores = output_dict["scores"][keep].tolist()
labels = output_dict["labels"][keep].tolist()
if id2label is not None:
labels = [id2label[x] for x in labels]
fig, ax = plt.subplots(figsize=(12, 12))
ax.imshow(pil_img)
colors = COLORS * 100
for score, (xmin, ymin, xmax, ymax), label, color in zip(
scores, boxes, labels, colors
):
ax.add_patch(
plt.Rectangle(
(xmin, ymin),
xmax - xmin,
ymax - ymin,
fill=False,
color=color,
linewidth=2,
)
)
ax.text(
xmin,
ymin,
f"{label}: {score:0.2f}",
fontsize=10,
bbox=dict(facecolor="yellow", alpha=0.5),
)
ax.axis("off")
return fig2img(fig)
def visualize_attention_map(pil_img, attention_map):
attention_map = attention_map[-1].detach().cpu()
avg_attention_weight = torch.mean(attention_map, dim=1).squeeze()
avg_attention_weight_resized = (
F.interpolate(
avg_attention_weight.unsqueeze(0).unsqueeze(0),
size=pil_img.size[::-1],
mode="bicubic",
)
.squeeze()
.numpy()
)
plt.imshow(pil_img)
plt.imshow(avg_attention_weight_resized, alpha=0.7, cmap="viridis")
plt.axis("off")
fig = plt.gcf()
return fig2img(fig)