polinaeterna's picture
polinaeterna HF staff
Update app.py
a1fafd0 verified
raw
history blame
12 kB
import requests
from collections import Counter
from requests.adapters import HTTPAdapter, Retry
import multiprocessing
import os
import time
import logging
import gradio as gr
import pandas as pd
import polars as pl
import matplotlib.pyplot as plt
import spaces
from gradio_huggingfacehub_search import HuggingfaceHubSearch
from huggingface_hub import PyTorchModelHubMixin
import torch
from torch import nn
from transformers import AutoModel, AutoTokenizer, AutoConfig
from tqdm import tqdm
logging.basicConfig(level=logging.DEBUG, format="%(asctime)s - %(levelname)s - %(message)s")
session = requests.Session()
retries = Retry(total=5, backoff_factor=1, status_forcelist=[502, 503, 504])
session.mount('http://', HTTPAdapter(max_retries=retries))
class QualityModel(nn.Module, PyTorchModelHubMixin):
def __init__(self, config):
super(QualityModel, self).__init__()
self.model = AutoModel.from_pretrained(config["base_model"])
self.dropout = nn.Dropout(config["fc_dropout"])
self.fc = nn.Linear(self.model.config.hidden_size, len(config["id2label"]))
def forward(self, input_ids, attention_mask):
features = self.model(
input_ids=input_ids, attention_mask=attention_mask
).last_hidden_state
dropped = self.dropout(features)
outputs = self.fc(dropped)
return torch.softmax(outputs[:, 0, :], dim=1)
device = "cuda" if torch.cuda.is_available() else "cpu"
config = AutoConfig.from_pretrained("nvidia/quality-classifier-deberta")
tokenizer = AutoTokenizer.from_pretrained("nvidia/quality-classifier-deberta")
model = QualityModel.from_pretrained("nvidia/quality-classifier-deberta").to(device)
# model = torch.compile(model)
model.eval()
@spaces.GPU
def predict(texts: list[str]):
inputs = tokenizer(
texts, return_tensors="pt", padding="longest", truncation=True
).to(device)
outputs = model(inputs["input_ids"], inputs["attention_mask"])
predicted_classes = torch.argmax(outputs, dim=1)
predicted_domains = [
config.id2label[class_idx.item()] for class_idx in predicted_classes.cpu().numpy()
]
return predicted_domains
def plot_and_df(texts, preds):
texts_df = pd.DataFrame({"quality": preds, "text": texts})
counts = Counter(preds)
counts_df = pd.DataFrame(
{
"quality": ["Low", "Medium", "High"],
"count": [counts.get("Low", 0), counts.get("Medium", 0), counts.get("High", 0)]
}
)
# counts.reset_index(inplace=True)
return (
gr.BarPlot(counts_df, x="quality", y="count"),
texts_df[texts_df["quality"] == "Low"][["text"]][:20],
texts_df[texts_df["quality"] == "Medium"][["text"]][:20],
texts_df[texts_df["quality"] == "High"][["text"]][:20],
)
@spaces.GPU
def run_quality_check(dataset, column, batch_size, num_examples):
info_resp = session.get(f"https://datasets-server.huggingface.co/info?dataset={dataset}", timeout=3).json()
if "error" in info_resp:
yield "❌ " + info_resp["error"], gr.BarPlot(), pd.DataFrame(), pd.DataFrame(), pd.DataFrame(), pd.DataFrame(),
return
config = "default" if "default" in info_resp["dataset_info"] else next(iter(info_resp["dataset_info"]))
split = "train" if "train" in info_resp["dataset_info"][config]["splits"] else next(
iter(info_resp["dataset_info"][config]["splits"]))
try:
data = pl.read_parquet(f"hf://datasets/{dataset}@~parquet/{config}/{split}/0000.parquet", columns=[column])
except pl.exceptions.ComputeError:
try:
data = pl.read_parquet(f"hf://datasets/{dataset}@~parquet/{config}/partial-{split}/0000.parquet", columns=[column])
except pl.exceptions.ComputeError:
try:
data = pl.read_parquet(f"hf://datasets/{dataset}@~parquet/{config}/{split}-part0/0000.parquet", columns=[column])
except Exception as error:
yield f"❌ {error}", gr.BarPlot(), pd.DataFrame(), pd.DataFrame(), pd.DataFrame(), pd.DataFrame(),
return
texts = [text[:10000] for text in data[column].to_list()]
# texts_sample = data.sample(100, shuffle=True, seed=16).to_pandas()
# batch_size = 100
predictions, texts_processed = [], []
num_examples = min(len(texts), num_examples)
for i in range(0, num_examples, batch_size):
batch_texts = texts[i:i+batch_size]
batch_predictions = predict(batch_texts)
predictions.extend(batch_predictions)
texts_processed.extend(batch_texts)
yield {"check in progress...": i / num_examples}, *plot_and_df(texts_processed, predictions), pd.DataFrame()
# with multiprocessing.Pool(processes=8) as pool:
# props = pool.map(proportion_non_ascii, texts)
#
# # non_ascii_df = pd.DataFrame.from_dict({"prop_non_ascii": props, "text": texts})
# plt.hist(props, bins=20, range=(0., 1.))
# plt.title('Histogram of proportion of non-ASCII characters')
# plt.xlabel('Proportion of non-ASCII characters')
# plt.ylabel('Number of texts')
yield {"finished": 1.}, *plot_and_df(texts_processed, predictions), data
PERSPECTIVE_API_KEY = os.environ.get("PERSPECTIVE_API_KEY")
PERSPECTIVE_URL = f"https://commentanalyzer.googleapis.com/v1alpha1/comments:analyze?key={PERSPECTIVE_API_KEY}"
REQUESTED_ATTRIBUTES = {"TOXICITY": {}, "SEVERE_TOXICITY": {},
"IDENTITY_ATTACK": {}, "INSULT": {}, "PROFANITY": {},
"THREAT": {}}
ATT_SCORE = "attributeScores"
SUM_SCORE = "summaryScore"
def plot_toxicity(scores):
fig, axs = plt.subplots(2, 3)#, figsize=(10, 6))
for x, y, score_name in zip([0,0,0,1,1,1], [0,1,2,0,1,2], scores):
axs[x,y].hist(scores[score_name], bins=20, range=(0., 1.))
axs[x,y].set_xlabel(score_name)
fig.supylabel("Number of texts")
fig.suptitle("Histogram of toxicity scores")
fig.tight_layout()
return fig
def call_perspective_api(texts_df, column_name, full_check=False):
headers = {
"content-type": "application/json",
}
req_att_scores = {attr: [] for attr in REQUESTED_ATTRIBUTES}
texts = texts_df.sample(100, random_state=16)[column_name].values if not full_check else texts_df[column_name].values
n_samples = len(texts)
for i, text in tqdm(enumerate(texts), desc="scanning with perspective"):
data = {
"comment": {"text": text},
"languages": ["en"],
"requestedAttributes": REQUESTED_ATTRIBUTES
}
time.sleep(1)
try:
req_response = requests.post(PERSPECTIVE_URL, json=data, headers=headers)
except Exception as e:
print(e)
return req_att_scores
if req_response.ok:
response = req_response.json()
# logger.info("Perspective API response is:")
# logger.info(response)
if ATT_SCORE in response:
for req_att in REQUESTED_ATTRIBUTES:
if req_att in response[ATT_SCORE]:
att_score = response[ATT_SCORE][req_att][SUM_SCORE]["value"]
req_att_scores[req_att].append(att_score)
else:
req_att_scores[req_att].append(0)
else:
# logger.error(
# "Unexpected response format from Perspective API."
# )
raise ValueError(req_response)
else:
try:
req_response.raise_for_status()
except Exception as e:
print(e)
return req_att_scores
if i % 10 == 0:
plot_toxicity(req_att_scores)
print(len(texts[:i]), len(req_att_scores["TOXICITY"]))
yield {"toxicity check in progress...": i / n_samples}, plt.gcf(), pd.DataFrame.from_dict({column_name: texts[:i+1], **req_att_scores})
plot_toxicity(req_att_scores)
yield {"toxicity check finished.": 1.}, plt.gcf(), pd.DataFrame.from_dict({column_name: texts, **req_att_scores})
def proportion_non_ascii(s):
"""
Compute the proportion of non-ASCII characters in a string.
Parameters:
s (str): The input string.
Returns:
float: The proportion of non-ASCII characters in the string.
"""
non_ascii_count = sum(1 for c in s if ord(c) > 127)
total_chars = len(s)
return non_ascii_count / total_chars if total_chars > 0 else 0.0
def non_ascii_check(texts_df, column_name):
texts = texts_df[column_name].to_list()
with multiprocessing.Pool(processes=8) as pool:
props = pool.map(proportion_non_ascii, texts)
# non_ascii_df = pd.DataFrame.from_dict({"prop_non_ascii": props, "text": texts})
plt.hist(props, bins=20, range=(0., 1.))
plt.title('Histogram of proportion of non-ASCII characters')
plt.xlabel('Proportion of non-ASCII characters')
plt.ylabel('Number of texts')
return plt.gcf()
with gr.Blocks() as demo:
gr.Markdown(
"""
# πŸ’« Dataset Quality Checker πŸ’«
Use [nvidia/quality-classifier-deberta](https://huggingface.co/nvidia/quality-classifier-deberta) on any text dataset on the Hub.
## Select dataset and text column
"""
)
dataset_name = HuggingfaceHubSearch(
label="Hub Dataset ID",
placeholder="Search for dataset id on Huggingface",
search_type="dataset",
# value="fka/awesome-chatgpt-prompts",
)
# config_name = "default" # TODO: user input
with gr.Accordion("Dataset preview", open=False):
@gr.render(inputs=dataset_name)
def embed(name):
html_code = f"""
<iframe
src="https://huggingface.co/datasets/{name}/embed/viewer/default/train"
frameborder="0"
width="100%"
height="700px"
></iframe>
"""
return gr.HTML(value=html_code)
text_column = gr.Textbox(placeholder="text", label="Text colum name to check (data must be non-nested, raw texts!)")
gr.Markdown("## Run nvidia quality classifier")
batch_size = gr.Slider(0, 128, 32, step=8, label="Inference batch size (set this to smaller value if this space crashes.)")
num_examples = gr.Number(500, label="Number of first examples to check")
gr_check_btn = gr.Button("Check Dataset")
progress_bar = gr.Label(show_label=False)
plot = gr.BarPlot()
with gr.Accordion("Explore some individual examples for each class", open=False):
gr.Markdown("### Low")
df_low = gr.DataFrame()
gr.Markdown("### Medium")
df_medium = gr.DataFrame()
gr.Markdown("### High")
df_high = gr.DataFrame()
texts_df = gr.DataFrame(visible=False)
gr_check_btn.click(
run_quality_check,
inputs=[dataset_name, text_column, batch_size, num_examples],
outputs=[progress_bar, plot, df_low, df_medium, df_high, texts_df]
)
gr.Markdown("""## Compute text quality measures
* proportion of non-ascii characters
* #TODO""")
gr_ascii_btn = gr.Button("Data measures")
non_ascii_hist = gr.Plot()
gr_ascii_btn.click(non_ascii_check, inputs=[texts_df, text_column], outputs=[non_ascii_hist])
gr.Markdown("## Explore toxicity")
checkbox = gr.Checkbox(value=False, label="Run on full first parquet data (better not)")
gr_toxicity_btn = gr.Button("Run perpspective API to check toxicity of random samples.")
toxicity_progress_bar = gr.Label(show_label=False)
toxicity_hist = gr.Plot()
with gr.Accordion("Explore examples with toxicity scores:", open=False):
toxicity_df = gr.DataFrame()
gr_toxicity_btn.click(
call_perspective_api,
inputs=[texts_df, text_column, checkbox],
outputs=[toxicity_progress_bar, toxicity_hist, toxicity_df]
)
demo.launch()