Spaces:
Running
on
Zero
Running
on
Zero
Commit
β’
12a4d67
1
Parent(s):
456fc29
add checker
Browse files- app.py +86 -0
- requirements.txt +5 -0
app.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import polars as pl
|
3 |
+
from gradio_huggingfacehub_search import HuggingfaceHubSearch
|
4 |
+
import torch
|
5 |
+
import spaces
|
6 |
+
from torch import nn
|
7 |
+
from transformers import AutoModel, AutoTokenizer, AutoConfig
|
8 |
+
from huggingface_hub import PyTorchModelHubMixin
|
9 |
+
import pandas as pd
|
10 |
+
|
11 |
+
|
12 |
+
class QualityModel(nn.Module, PyTorchModelHubMixin):
|
13 |
+
def __init__(self, config):
|
14 |
+
super(QualityModel, self).__init__()
|
15 |
+
self.model = AutoModel.from_pretrained(config["base_model"])
|
16 |
+
self.dropout = nn.Dropout(config["fc_dropout"])
|
17 |
+
self.fc = nn.Linear(self.model.config.hidden_size, len(config["id2label"]))
|
18 |
+
|
19 |
+
def forward(self, input_ids, attention_mask):
|
20 |
+
features = self.model(
|
21 |
+
input_ids=input_ids, attention_mask=attention_mask
|
22 |
+
).last_hidden_state
|
23 |
+
dropped = self.dropout(features)
|
24 |
+
outputs = self.fc(dropped)
|
25 |
+
return torch.softmax(outputs[:, 0, :], dim=1)
|
26 |
+
|
27 |
+
device = "cuda"
|
28 |
+
config = AutoConfig.from_pretrained("nvidia/quality-classifier-deberta")
|
29 |
+
tokenizer = AutoTokenizer.from_pretrained("nvidia/quality-classifier-deberta")
|
30 |
+
model = QualityModel.from_pretrained("nvidia/quality-classifier-deberta").to(device)
|
31 |
+
model.eval()
|
32 |
+
|
33 |
+
|
34 |
+
@spaces.GPU
|
35 |
+
def predict(texts: list[str]):
|
36 |
+
inputs = tokenizer(
|
37 |
+
texts, return_tensors="pt", padding="longest", truncation=True
|
38 |
+
).to(device)
|
39 |
+
outputs = model(inputs["input_ids"], inputs["attention_mask"])
|
40 |
+
predicted_classes = torch.argmax(outputs, dim=1)
|
41 |
+
predicted_domains = [
|
42 |
+
config.id2label[class_idx.item()] for class_idx in predicted_classes.cpu().numpy()
|
43 |
+
]
|
44 |
+
return predicted_domains
|
45 |
+
|
46 |
+
|
47 |
+
def run_quality_check(dataset, config, column, n_samples):
|
48 |
+
data = pl.read_parquet(f"hf://datasets/{dataset}@parquet~/{config}/train/0000.parquet", columns=[column])
|
49 |
+
texts = data[column].tolist()
|
50 |
+
predictions = predict(texts[:n_samples])
|
51 |
+
return pd.DataFrame({"quality": predictions}).value_counts()
|
52 |
+
|
53 |
+
|
54 |
+
with gr.Blocks() as demo:
|
55 |
+
gr.Markdown("# π« Dataset Quality Checker π«")
|
56 |
+
gr_dataset_name = HuggingfaceHubSearch(
|
57 |
+
label="Hub Dataset ID",
|
58 |
+
placeholder="Search for dataset id on Huggingface",
|
59 |
+
search_type="dataset",
|
60 |
+
value="fka/awesome-chatgpt-prompts",
|
61 |
+
)
|
62 |
+
dataset_name = HuggingfaceHubSearch(
|
63 |
+
label="Hub Dataset ID",
|
64 |
+
placeholder="Search for dataset id on Huggingface",
|
65 |
+
search_type="dataset",
|
66 |
+
value="HuggingFaceFW/fineweb",
|
67 |
+
)
|
68 |
+
config_name = "default"
|
69 |
+
@gr.render(inputs=dataset_name)
|
70 |
+
def embed(name):
|
71 |
+
html_code = f"""
|
72 |
+
<iframe
|
73 |
+
src="https://huggingface.co/datasets/{name}/embed/viewer/{config_name}/train"
|
74 |
+
frameborder="0"
|
75 |
+
width="100%"
|
76 |
+
height="700px"
|
77 |
+
></iframe>
|
78 |
+
"""
|
79 |
+
return gr.HTML(value=html_code)
|
80 |
+
text_column = gr.Textbox(placeholder="text", label="Text colum name to check (data must be non-nested, raw texts!)")
|
81 |
+
n_samples = gr.Number(placeholder=20, label="Num first samples to run check")
|
82 |
+
gr_check_btn = gr.Button("Check Dataset")
|
83 |
+
# plot = gr.BarPlot()
|
84 |
+
df = gr.DataFrame(visible=False)
|
85 |
+
gr_check_btn.click(run_quality_check, inputs=[dataset_name, config_name, text_column, n_samples], outputs=[df])
|
86 |
+
gr.BarPlot(df)
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio_huggingfacehub_search==0.0.7
|
2 |
+
transformers
|
3 |
+
polars
|
4 |
+
torch
|
5 |
+
huggingface_hub
|