File size: 1,187 Bytes
90425de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e19fb17
 
90425de
 
 
 
 
 
 
 
ac10520
90425de
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
import os
from transformers import AutoTokenizer, AutoModelForSequenceClassification

from interfaces.cap import languages as languages_cap
from interfaces.cap import domains as domains_cap

from interfaces.cap import build_huggingface_path as hf_cap_path
from interfaces.manifesto import build_huggingface_path as hf_manifesto_path
from interfaces.sentiment import build_huggingface_path as hf_sentiment_path
from interfaces.emotion import build_huggingface_path as hf_emotion_path

HF_TOKEN = os.environ["hf_read"]

# should be a temporary solution
models = [hf_manifesto_path(""), hf_sentiment_path(""), hf_emotion_path("")]

domains_cap = list(domains_cap.values())
for language in languages_cap:
    for domain in domains_cap:
        models.append(hf_cap_path(language, domain))

tokenizers = ["xlm-roberta-large"]

def download_hf_models():
    for model_id in models:
        AutoModelForSequenceClassification.from_pretrained(model_id, low_cpu_mem_usage=True, device_map="auto", offload_folder="offload", 
                                                                   token=HF_TOKEN)
    for tokenizer_id in tokenizers:
        AutoTokenizer.from_pretrained(tokenizer_id)