Spaces:
Runtime error
Runtime error
import torch | |
from nltk import sent_tokenize | |
import nltk | |
from tqdm import tqdm | |
import gradio as gr | |
from transformers import T5ForConditionalGeneration, T5Tokenizer | |
nltk.download("punkt") | |
# autodetect the available device | |
GPU_IDX = 1 # which GPU to use | |
if torch.cuda.is_available(): | |
num_gpus = torch.cuda.device_count() | |
print(f"Number of available GPUs: {num_gpus}") | |
assert GPU_IDX < num_gpus, f"GPU index {GPU_IDX} not available." | |
device = torch.device(f"cuda:{GPU_IDX}") | |
print(f"Using GPU: {GPU_IDX}") | |
else: | |
print("CUDA is not available. Using CPU instead.") | |
device = torch.device("cpu") | |
# Configuration for models and their adapters | |
model_config = { | |
"Base Model": "polygraf-ai/poly-humanizer-base", | |
"Large Model": "polygraf-ai/poly-humanizer-large", | |
# "XL Model": { | |
# "path": "google/flan-t5-xl", | |
# "adapters": { | |
# "XL Model Adapter": "polygraf-ai/poly-humanizer-XL-adapter", | |
# "XL Law Model Adapter": "polygraf-ai/poly-humanizer-XL-law-adapter", | |
# "XL Marketing Model Adapter": "polygraf-ai/marketing-cleaned-13K-grad-acum-4-full", | |
# "XL Child Style Model Adapter": "polygraf-ai/poly-humanizer-XL-children-adapter-checkpoint-4000", | |
# }, | |
# }, | |
} | |
# cache the base models, tokenizers, and adapters | |
models, tokenizers = {}, {} | |
for name, config in model_config.items(): | |
path = config if isinstance(config, str) else config["path"] | |
# initialize model and tokenizer | |
model = T5ForConditionalGeneration.from_pretrained(path, torch_dtype=torch.bfloat16).to(device) | |
models[name] = model | |
tokenizers[name] = T5Tokenizer.from_pretrained(path) | |
# load all avalable adapters, each being additional roughly 150M parameters | |
if isinstance(config, dict) and "adapters" in config: | |
for adapter_name, adapter_path in config["adapters"].items(): | |
model.load_adapter(adapter_path, adapter_name=adapter_name) | |
print(f"Loaded adapter: {adapter_name}, Num. params: {model.num_parameters()}") | |
def paraphrase_text( | |
text, | |
progress=gr.Progress(), | |
model_name="Base Model", | |
temperature=1.2, | |
repetition_penalty=1.0, | |
top_k=50, | |
length_penalty=1.0, | |
): | |
progress(0, desc="Starting to Humanize") | |
progress(0.05) | |
# select the model, tokenizer and adapter | |
if "XL" in model_name: # dynamic adapter load/unload for XL models | |
# all adapter models use the XL model as the base | |
tokenizer, model = tokenizers["XL Model"], models["XL Model"] | |
# set the adapter if it's not already set | |
if model.active_adapters() != [f"{model_name} Adapter"]: | |
model.set_adapter(f"{model_name} Adapter") | |
print(f"Using adapter: {model_name} Adapter") | |
else: | |
tokenizer = tokenizers[model_name] | |
model = models[model_name] | |
# paraphrase each chunk of text | |
sentences = sent_tokenize(text) # sentence boundary detection | |
paraphrases = [] | |
for sentence in progress.tqdm(sentences, desc="Humanizing"): | |
sentence = sentence.strip() | |
if len(sentence) == 0: | |
continue | |
inputs = tokenizer("Please paraphrase this sentence: " + sentence, return_tensors="pt").to(device) | |
outputs = model.generate( | |
**inputs, | |
do_sample=True, | |
temperature=temperature, | |
repetition_penalty=repetition_penalty, | |
max_length=128, | |
top_k=top_k, | |
length_penalty=length_penalty, | |
) | |
paraphrased_sentence = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
paraphrases.append(paraphrased_sentence) | |
print(f"\nOriginal: {sentence}") | |
print(f"Paraphrased: {paraphrased_sentence}") | |
combined_paraphrase = " ".join(paraphrases) | |
return combined_paraphrase |