import torch from nltk import sent_tokenize import nltk from tqdm import tqdm import gradio as gr from transformers import T5ForConditionalGeneration, T5Tokenizer nltk.download("punkt") # autodetect the available device GPU_IDX = 1 # which GPU to use if torch.cuda.is_available(): num_gpus = torch.cuda.device_count() print(f"Number of available GPUs: {num_gpus}") assert GPU_IDX < num_gpus, f"GPU index {GPU_IDX} not available." device = torch.device(f"cuda:{GPU_IDX}") print(f"Using GPU: {GPU_IDX}") else: print("CUDA is not available. Using CPU instead.") device = torch.device("cpu") # Configuration for models and their adapters model_config = { "Base Model": "polygraf-ai/poly-humanizer-base", "Large Model": "polygraf-ai/poly-humanizer-large", # "XL Model": { # "path": "google/flan-t5-xl", # "adapters": { # "XL Model Adapter": "polygraf-ai/poly-humanizer-XL-adapter", # "XL Law Model Adapter": "polygraf-ai/poly-humanizer-XL-law-adapter", # "XL Marketing Model Adapter": "polygraf-ai/marketing-cleaned-13K-grad-acum-4-full", # "XL Child Style Model Adapter": "polygraf-ai/poly-humanizer-XL-children-adapter-checkpoint-4000", # }, # }, } # cache the base models, tokenizers, and adapters models, tokenizers = {}, {} for name, config in model_config.items(): path = config if isinstance(config, str) else config["path"] # initialize model and tokenizer model = T5ForConditionalGeneration.from_pretrained(path, torch_dtype=torch.bfloat16).to(device) models[name] = model tokenizers[name] = T5Tokenizer.from_pretrained(path) # load all avalable adapters, each being additional roughly 150M parameters if isinstance(config, dict) and "adapters" in config: for adapter_name, adapter_path in config["adapters"].items(): model.load_adapter(adapter_path, adapter_name=adapter_name) print(f"Loaded adapter: {adapter_name}, Num. params: {model.num_parameters()}") def paraphrase_text( text, progress=gr.Progress(), model_name="Base Model", temperature=1.2, repetition_penalty=1.0, top_k=50, length_penalty=1.0, ): progress(0, desc="Starting to Humanize") progress(0.05) # select the model, tokenizer and adapter if "XL" in model_name: # dynamic adapter load/unload for XL models # all adapter models use the XL model as the base tokenizer, model = tokenizers["XL Model"], models["XL Model"] # set the adapter if it's not already set if model.active_adapters() != [f"{model_name} Adapter"]: model.set_adapter(f"{model_name} Adapter") print(f"Using adapter: {model_name} Adapter") else: tokenizer = tokenizers[model_name] model = models[model_name] # paraphrase each chunk of text sentences = sent_tokenize(text) # sentence boundary detection paraphrases = [] for sentence in progress.tqdm(sentences, desc="Humanizing"): sentence = sentence.strip() if len(sentence) == 0: continue inputs = tokenizer("Please paraphrase this sentence: " + sentence, return_tensors="pt").to(device) outputs = model.generate( **inputs, do_sample=True, temperature=temperature, repetition_penalty=repetition_penalty, max_length=128, top_k=top_k, length_penalty=length_penalty, ) paraphrased_sentence = tokenizer.decode(outputs[0], skip_special_tokens=True) paraphrases.append(paraphrased_sentence) print(f"\nOriginal: {sentence}") print(f"Paraphrased: {paraphrased_sentence}") combined_paraphrase = " ".join(paraphrases) return combined_paraphrase