File size: 9,543 Bytes
029c7a1
 
 
 
 
 
 
 
 
 
45d10c4
c78ec74
029c7a1
 
 
 
 
 
 
 
 
416ca10
029c7a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
416ca10
029c7a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45d10c4
029c7a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c78ec74
 
 
029c7a1
 
 
 
 
 
 
 
c78ec74
029c7a1
c78ec74
 
 
 
 
029c7a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c78ec74
 
029c7a1
c78ec74
029c7a1
 
c78ec74
 
 
 
 
029c7a1
 
c78ec74
 
 
 
 
 
029c7a1
c78ec74
 
 
 
 
 
 
 
029c7a1
c78ec74
029c7a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
416ca10
029c7a1
 
 
 
2bc427a
acbe872
2bc427a
029c7a1
 
 
 
 
 
2bc427a
029c7a1
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
import time
from nltk.tokenize import sent_tokenize
from googleapiclient.discovery import build
from collections import Counter
import re, math
from sentence_transformers import SentenceTransformer, util
import asyncio
import httpx
from bs4 import BeautifulSoup
import numpy as np
import concurrent
from multiprocessing import Pool


WORD = re.compile(r"\w+")
model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")


# returns cosine similarity of two vectors
# input: two vectors
# output: integer between 0 and 1.

def get_cosine(vec1, vec2):
    intersection = set(vec1.keys()) & set(vec2.keys())

    # calculating numerator
    numerator = sum([vec1[x] * vec2[x] for x in intersection])

    # calculating denominator
    sum1 = sum([vec1[x] ** 2 for x in vec1.keys()])
    sum2 = sum([vec2[x] ** 2 for x in vec2.keys()])
    denominator = math.sqrt(sum1) * math.sqrt(sum2)

    # checking for divide by zero
    if denominator == 0:
        return 0.0
    else:
        return float(numerator) / denominator


# converts given text into a vector
def text_to_vector(text):
    # uses the Regular expression above and gets all words
    words = WORD.findall(text)
    # returns a counter of all the words (count of number of occurences)
    return Counter(words)


# returns cosine similarity of two words
# uses: text_to_vector(text) and get_cosine(v1,v2)
def cosineSim(text1, text2):
    vector1 = text_to_vector(text1)
    vector2 = text_to_vector(text2)
    # print vector1,vector2
    cosine = get_cosine(vector1, vector2)
    return cosine


def cos_sim_torch(embedding_1, embedding_2):
    return util.pytorch_cos_sim(embedding_1, embedding_2).item()


def embed_text(text):
    return model.encode(text, convert_to_tensor=True)


def sentence_similarity(text1, text2):
    embedding_1 = model.encode(text1, convert_to_tensor=True)
    embedding_2 = model.encode(text2, convert_to_tensor=True)

    o = util.pytorch_cos_sim(embedding_1, embedding_2)
    return o.item()


def google_search(
    plag_option,
    sentences,
    urlCount,
    scoreArray,
    urlList,
    sorted_date,
    domains_to_skip,
    api_key,
    cse_id,
    **kwargs,
):
    service = build("customsearch", "v1", developerKey=api_key)
    for i, sentence in enumerate(sentences):
        results = (
            service.cse()
            .list(q=sentence, cx=cse_id, sort=sorted_date, **kwargs)
            .execute()
        )
        if "items" in results and len(results["items"]) > 0:
            for count, link in enumerate(results["items"]):
                # stop after 3 pages
                if count >= 4:
                    break
                # skip user selected domains
                if any(
                    ("." + domain) in link["link"] for domain in domains_to_skip
                ):
                    continue
                # clean up snippet of '...'
                snippet = link["snippet"]
                ind = snippet.find("...")
                if ind < 20 and ind > 9:
                    snippet = snippet[ind + len("... ") :]
                ind = snippet.find("...")
                if ind > len(snippet) - 5:
                    snippet = snippet[:ind]

                # update cosine similarity between snippet and given text
                url = link["link"]
                if url not in urlList:
                    urlList.append(url)
                    scoreArray.append([0] * len(sentences))
                urlCount[url] = urlCount[url] + 1 if url in urlCount else 1
                if plag_option == "Standard":
                    scoreArray[urlList.index(url)][i] = cosineSim(
                        sentence, snippet
                    )
                else:
                    scoreArray[urlList.index(url)][i] = sentence_similarity(
                        sentence, snippet
                    )
    return urlCount, scoreArray


def split_sentence_blocks(text):

    sents = sent_tokenize(text)
    two_sents = []
    for i in range(len(sents)):
        if (i % 4) == 0:
            two_sents.append(sents[i])
        else:
            two_sents[len(two_sents) - 1] += " " + sents[i]
    return two_sents


months = {
    "January": "01",
    "February": "02",
    "March": "03",
    "April": "04",
    "May": "05",
    "June": "06",
    "July": "07",
    "August": "08",
    "September": "09",
    "October": "10",
    "November": "11",
    "December": "12",
}


def build_date(year=2024, month="March", day=1):
    return f"{year}{months[month]}{day}"


async def get_url_data(url, client):
    try:
        r = await client.get(url)
        # print(r.status_code)
        if r.status_code == 200:
            # print("in")
            soup = BeautifulSoup(r.content, "html.parser")
            return soup
    except Exception:
        return None


def remove_punc(text):
    res = re.sub(r"[^\w\s]", "", text)
    return res


def split_ngrams(text, n):
    # return n-grams of size n
    words = text.split()
    return [words[i : i + n] for i in range(len(words) - n + 1)]


async def parallel_scrap(urls):
    async with httpx.AsyncClient(timeout=30) as client:
        tasks = []
        for url in urls:
            tasks.append(get_url_data(url=url, client=client))
        results = await asyncio.gather(*tasks, return_exceptions=True)
    return results



def matching_score(sentence_content_tuple):
    sentence, content = sentence_content_tuple
    if sentence in content:
        return 1
    else:
        n = 5
        ngrams = split_ngrams(sentence, n)
        if len(ngrams) == 0:
            return 0
        matched = [x for x in ngrams if " ".join(x) in content]
        return len(matched) / len(ngrams)

def process_with_multiprocessing(input_data):
    with Pool(processes=4) as pool:
        scores = pool.map(matching_score, input_data)
    return scores
    
def plagiarism_check(
    plag_option,
    input,
    year_from,
    month_from,
    day_from,
    year_to,
    month_to,
    day_to,
    domains_to_skip,
):
    api_key = "AIzaSyCLyCCpOPLZWuptuPAPSg8cUIZhdEMVf6g"
    api_key = "AIzaSyCS1WQDMl1IMjaXtwSd_2rA195-Yc4psQE"
    api_key = "AIzaSyCB61O70B8AC3l5Kk3KMoLb6DN37B7nqIk"
    # api_key = "AIzaSyCg1IbevcTAXAPYeYreps6wYWDbU0Kz8tg"
    api_key = "AIzaSyA5VVwY1eEoIoflejObrxFDI0DJvtbmgW8"
    cse_id = "851813e81162b4ed4"

    sentences = split_sentence_blocks(input)
    urlCount = {}
    ScoreArray = []
    urlList = []
    date_from = build_date(year_from, month_from, day_from)
    date_to = build_date(year_to, month_to, day_to)
    sort_date = f"date:r:{date_from}:{date_to}"
    # get list of URLS to check
    urlCount, ScoreArray = google_search(
        plag_option,
        sentences,
        urlCount,
        ScoreArray,
        urlList,
        sort_date,
        domains_to_skip,
        api_key,
        cse_id,
    )

    # Scrape URLs in list
    formatted_tokens = []
    soups = asyncio.run(parallel_scrap(urlList))
    
    # # Populate matching scores for scrapped pages
    # for i, soup in enumerate(soups):
    #     print(f"Analyzing {i+1} of {len(soups)} soups........................")
    #     if soup:
    #         page_content = soup.text
            
    #         for j, sent in enumerate(sentences):
    #             args_list = (sent, page_content)
    #             score = matching_score(args_list)
    #             # score = cos_sim_torch(embed_text(sent), source_embeddings[i])
    #             ScoreArray[i][j] = score

    input_data = []
    for i, soup in enumerate(soups):
        if soup:
            page_content = soup.text
            for j, sent in enumerate(sentences):
                input_data.append((sent, page_content))

    scores = process_with_multiprocessing(input_data)
    k = 0 
    for i, soup in enumerate(soups):
        if soup:
            for j, _ in enumerate(sentences):
                ScoreArray[i][j] = scores[k]
                k += 1 
            
    sentenceToMaxURL = [-1] * len(sentences)
    
    for j in range(len(sentences)):
        if j > 0:
            maxScore = ScoreArray[sentenceToMaxURL[j - 1]][j]
            sentenceToMaxURL[j] = sentenceToMaxURL[j - 1]
        else:
            maxScore = -1

        for i in range(len(ScoreArray)):
            margin = (
                0.1
                if (j > 0 and sentenceToMaxURL[j] == sentenceToMaxURL[j - 1])
                else 0
            )
            if ScoreArray[i][j] - maxScore > margin:
                maxScore = ScoreArray[i][j]
                sentenceToMaxURL[j] = i

    index = np.unique(sentenceToMaxURL)

    urlScore = {}
    for url in index:
        s = [
            ScoreArray[url][sen]
            for sen in range(len(sentences))
            if sentenceToMaxURL[sen] == url
        ]
        urlScore[url] = sum(s) / len(s)

    index_descending = sorted(urlScore, key=urlScore.get, reverse=True)

    urlMap = {}
    for count, i in enumerate(index_descending):
        urlMap[i] = count + 1
        
    for i, sent in enumerate(sentences):
        formatted_tokens.append(
            (sent, "[" + str(urlMap[sentenceToMaxURL[i]]) + "]")
        )
        
    formatted_tokens.append("\n\n\n")
    
    for ind in index_descending:
        formatted_tokens.append(
            (
                urlList[ind]
                + " --- Matching Score: "
                + f"{str(round(urlScore[ind] * 100, 2))}%",
                "[" + str(urlMap[ind]) + "]",
            )
        )
        formatted_tokens.append(("\n", None))

    return formatted_tokens