Spaces:
Running
Running
File size: 7,225 Bytes
45d10c4 8125190 45d10c4 8125190 45d10c4 8125190 45d10c4 8125190 45d10c4 8125190 45d10c4 8125190 45d10c4 8125190 45d10c4 8125190 45d10c4 8125190 45d10c4 8125190 45d10c4 8125190 45d10c4 8125190 45d10c4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
import yaml
import subprocess
import nltk
from nltk import word_tokenize
from nltk.corpus import cmudict, stopwords
import spacy
import torch
from transformers import GPT2LMHeadModel, GPT2TokenizerFast
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.patches import Circle, RegularPolygon
from matplotlib.path import Path
from matplotlib.projections import register_projection
from matplotlib.projections.polar import PolarAxes
from matplotlib.spines import Spine
from matplotlib.transforms import Affine2D
from writing_analysis import (
estimated_slightly_difficult_words_ratio,
entity_density,
determiners_frequency,
punctuation_diversity,
type_token_ratio,
calculate_perplexity,
calculate_syntactic_tree_depth,
hapax_legomena_ratio,
mtld,
)
nltk.download("cmudict")
nltk.download("punkt")
nltk.download("stopwords")
nltk.download("wordnet")
d = cmudict.dict()
command = ["python3", "-m", "spacy", "download", "en_core_web_sm"]
subprocess.run(command)
nlp = spacy.load("en_core_web_sm")
with open("config.yaml", "r") as file:
params = yaml.safe_load(file)
device = "cuda" if torch.cuda.is_available() else "cpu"
readability_model_id = params["READABILITY_MODEL_ID"]
gpt2_model = GPT2LMHeadModel.from_pretrained(readability_model_id).to(device)
gpt2_tokenizer = GPT2TokenizerFast.from_pretrained(readability_model_id)
def normalize(value, min_value, max_value):
normalized_value = ((value - min_value) * 100) / (max_value - min_value)
return max(0, min(100, normalized_value))
def depth_analysis(input_text):
usual_ranges = {
"estimated_slightly_difficult_words_ratio": (
0.2273693623058005,
0.557383692351033,
),
"entity_density": (-0.07940776754145815, 0.23491038179986615),
"determiners_frequency": (0.012461059190031154, 0.15700934579439252),
"punctuation_diversity": (-0.21875, 0.53125),
"type_token_ratio": (0.33002482852189063, 1.0894414982357028),
"calculate_perplexity": (-25.110544681549072, 82.4620680809021),
"calculate_syntactic_tree_depth": (1.8380681818181812, 10.997159090909092),
"hapax_legomena_ratio": (0.0830971690138207, 1.0302715687215778),
"mtld": (-84.03125000000001, 248.81875000000002),
}
vocabulary_level = estimated_slightly_difficult_words_ratio(input_text, d)
entity_ratio = entity_density(input_text, nlp)
determiner_use = determiners_frequency(input_text, nlp)
punctuation_variety = punctuation_diversity(input_text)
sentence_depth = calculate_syntactic_tree_depth(input_text, nlp)
perplexity = calculate_perplexity(input_text, gpt2_model, gpt2_tokenizer, device)
lexical_diversity = type_token_ratio(input_text)
unique_words = hapax_legomena_ratio(input_text)
vocabulary_stability = mtld(input_text)
# normalize between 0 and 100
vocabulary_level_norm = normalize(
vocabulary_level, *usual_ranges["estimated_slightly_difficult_words_ratio"]
)
entity_ratio_norm = normalize(entity_ratio, *usual_ranges["entity_density"])
determiner_use_norm = normalize(
determiner_use, *usual_ranges["determiners_frequency"]
)
punctuation_variety_norm = normalize(
punctuation_variety, *usual_ranges["punctuation_diversity"]
)
lexical_diversity_norm = normalize(
lexical_diversity, *usual_ranges["type_token_ratio"]
)
unique_words_norm = normalize(unique_words, *usual_ranges["hapax_legomena_ratio"])
vocabulary_stability_norm = normalize(vocabulary_stability, *usual_ranges["mtld"])
sentence_depth_norm = normalize(
sentence_depth, *usual_ranges["calculate_syntactic_tree_depth"]
)
perplexity_norm = normalize(perplexity, *usual_ranges["calculate_perplexity"])
features = {
"Lexical Diversity": lexical_diversity_norm,
"Vocabulary Level": vocabulary_level_norm,
"Unique Words": unique_words_norm,
"Determiner Use": determiner_use_norm,
"Punctuation Variety": punctuation_variety_norm,
"Sentence Depth": sentence_depth_norm,
"Vocabulary Stability": vocabulary_stability_norm,
"Entity Ratio": entity_ratio_norm,
"Perplexity": perplexity_norm,
}
def radar_factory(num_vars, frame="circle"):
theta = np.linspace(0, 2 * np.pi, num_vars, endpoint=False)
class RadarTransform(PolarAxes.PolarTransform):
def transform_path_non_affine(self, path):
if path._interpolation_steps > 1:
path = path.interpolated(num_vars)
return Path(self.transform(path.vertices), path.codes)
class RadarAxes(PolarAxes):
name = "radar"
PolarTransform = RadarTransform
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.set_theta_zero_location("N")
def fill(self, *args, closed=True, **kwargs):
return super().fill(closed=closed, *args, **kwargs)
def plot(self, *args, **kwargs):
lines = super().plot(*args, **kwargs)
for line in lines:
self._close_line(line)
def _close_line(self, line):
x, y = line.get_data()
if x[0] != x[-1]:
x = np.append(x, x[0])
y = np.append(y, y[0])
line.set_data(x, y)
def set_varlabels(self, labels):
self.set_thetagrids(np.degrees(theta), labels)
def _gen_axes_patch(self):
if frame == "circle":
return Circle((0.5, 0.5), 0.5)
elif frame == "polygon":
return RegularPolygon(
(0.5, 0.5), num_vars, radius=0.5, edgecolor="k"
)
def _gen_axes_spines(self):
if frame == "polygon":
spine = Spine(
axes=self,
spine_type="circle",
path=Path.unit_regular_polygon(num_vars),
)
spine.set_transform(
Affine2D().scale(0.5).translate(0.5, 0.5) + self.transAxes
)
return {"polar": spine}
register_projection(RadarAxes)
return theta
N = 9
theta = radar_factory(N, frame="polygon")
data = features.values()
labels = features.keys()
fig, ax = plt.subplots(subplot_kw=dict(projection="radar"), figsize=(7.5, 5))
ax.plot(theta, data)
ax.fill(theta, data, alpha=0.4)
ax.set_varlabels(labels)
rgrids = np.linspace(0, 100, num=6)
ax.set_rgrids(
rgrids, labels=[f"{round(r)}%" for r in rgrids], fontsize=8, color="black"
)
ax.grid(True, color="black", linestyle="-", linewidth=0.5, alpha=0.5)
for dd, (label, value) in enumerate(zip(labels, data)):
ax.text(
theta[dd] + 0.1,
value + 5,
f"{value:.0f}",
horizontalalignment="left",
verticalalignment="bottom",
fontsize=8,
)
return fig
|