File size: 7,225 Bytes
45d10c4
 
8125190
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45d10c4
8125190
45d10c4
 
8125190
 
 
 
 
 
 
45d10c4
 
 
 
 
 
 
8125190
 
 
 
45d10c4
 
 
8125190
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45d10c4
8125190
 
45d10c4
8125190
 
45d10c4
8125190
 
 
 
45d10c4
8125190
45d10c4
 
8125190
 
 
 
 
 
 
 
 
45d10c4
8125190
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45d10c4
8125190
 
 
 
 
 
 
 
 
 
 
 
45d10c4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import yaml
import subprocess
import nltk
from nltk import word_tokenize
from nltk.corpus import cmudict, stopwords
import spacy
import torch
from transformers import GPT2LMHeadModel, GPT2TokenizerFast
import matplotlib.pyplot as plt
import numpy as np

from matplotlib.patches import Circle, RegularPolygon
from matplotlib.path import Path
from matplotlib.projections import register_projection
from matplotlib.projections.polar import PolarAxes
from matplotlib.spines import Spine
from matplotlib.transforms import Affine2D
from writing_analysis import (
    estimated_slightly_difficult_words_ratio,
    entity_density,
    determiners_frequency,
    punctuation_diversity,
    type_token_ratio,
    calculate_perplexity,
    calculate_syntactic_tree_depth,
    hapax_legomena_ratio,
    mtld,
)

nltk.download("cmudict")
nltk.download("punkt")
nltk.download("stopwords")
nltk.download("wordnet")
d = cmudict.dict()
command = ["python3", "-m", "spacy", "download", "en_core_web_sm"]
subprocess.run(command)
nlp = spacy.load("en_core_web_sm")


with open("config.yaml", "r") as file:
    params = yaml.safe_load(file)
device = "cuda" if torch.cuda.is_available() else "cpu"
readability_model_id = params["READABILITY_MODEL_ID"]
gpt2_model = GPT2LMHeadModel.from_pretrained(readability_model_id).to(device)
gpt2_tokenizer = GPT2TokenizerFast.from_pretrained(readability_model_id)


def normalize(value, min_value, max_value):
    normalized_value = ((value - min_value) * 100) / (max_value - min_value)
    return max(0, min(100, normalized_value))


def depth_analysis(input_text):

    usual_ranges = {
        "estimated_slightly_difficult_words_ratio": (
            0.2273693623058005,
            0.557383692351033,
        ),
        "entity_density": (-0.07940776754145815, 0.23491038179986615),
        "determiners_frequency": (0.012461059190031154, 0.15700934579439252),
        "punctuation_diversity": (-0.21875, 0.53125),
        "type_token_ratio": (0.33002482852189063, 1.0894414982357028),
        "calculate_perplexity": (-25.110544681549072, 82.4620680809021),
        "calculate_syntactic_tree_depth": (1.8380681818181812, 10.997159090909092),
        "hapax_legomena_ratio": (0.0830971690138207, 1.0302715687215778),
        "mtld": (-84.03125000000001, 248.81875000000002),
    }

    vocabulary_level = estimated_slightly_difficult_words_ratio(input_text, d)
    entity_ratio = entity_density(input_text, nlp)
    determiner_use = determiners_frequency(input_text, nlp)
    punctuation_variety = punctuation_diversity(input_text)
    sentence_depth = calculate_syntactic_tree_depth(input_text, nlp)
    perplexity = calculate_perplexity(input_text, gpt2_model, gpt2_tokenizer, device)
    lexical_diversity = type_token_ratio(input_text)
    unique_words = hapax_legomena_ratio(input_text)
    vocabulary_stability = mtld(input_text)

    # normalize between 0 and 100
    vocabulary_level_norm = normalize(
        vocabulary_level, *usual_ranges["estimated_slightly_difficult_words_ratio"]
    )
    entity_ratio_norm = normalize(entity_ratio, *usual_ranges["entity_density"])
    determiner_use_norm = normalize(
        determiner_use, *usual_ranges["determiners_frequency"]
    )
    punctuation_variety_norm = normalize(
        punctuation_variety, *usual_ranges["punctuation_diversity"]
    )
    lexical_diversity_norm = normalize(
        lexical_diversity, *usual_ranges["type_token_ratio"]
    )
    unique_words_norm = normalize(unique_words, *usual_ranges["hapax_legomena_ratio"])
    vocabulary_stability_norm = normalize(vocabulary_stability, *usual_ranges["mtld"])
    sentence_depth_norm = normalize(
        sentence_depth, *usual_ranges["calculate_syntactic_tree_depth"]
    )
    perplexity_norm = normalize(perplexity, *usual_ranges["calculate_perplexity"])

    features = {
        "Lexical Diversity": lexical_diversity_norm,
        "Vocabulary Level": vocabulary_level_norm,
        "Unique Words": unique_words_norm,
        "Determiner Use": determiner_use_norm,
        "Punctuation Variety": punctuation_variety_norm,
        "Sentence Depth": sentence_depth_norm,
        "Vocabulary Stability": vocabulary_stability_norm,
        "Entity Ratio": entity_ratio_norm,
        "Perplexity": perplexity_norm,
    }

    def radar_factory(num_vars, frame="circle"):
        theta = np.linspace(0, 2 * np.pi, num_vars, endpoint=False)

        class RadarTransform(PolarAxes.PolarTransform):
            def transform_path_non_affine(self, path):
                if path._interpolation_steps > 1:
                    path = path.interpolated(num_vars)
                return Path(self.transform(path.vertices), path.codes)

        class RadarAxes(PolarAxes):
            name = "radar"
            PolarTransform = RadarTransform

            def __init__(self, *args, **kwargs):
                super().__init__(*args, **kwargs)
                self.set_theta_zero_location("N")

            def fill(self, *args, closed=True, **kwargs):
                return super().fill(closed=closed, *args, **kwargs)

            def plot(self, *args, **kwargs):
                lines = super().plot(*args, **kwargs)
                for line in lines:
                    self._close_line(line)

            def _close_line(self, line):
                x, y = line.get_data()
                if x[0] != x[-1]:
                    x = np.append(x, x[0])
                    y = np.append(y, y[0])
                    line.set_data(x, y)

            def set_varlabels(self, labels):
                self.set_thetagrids(np.degrees(theta), labels)

            def _gen_axes_patch(self):
                if frame == "circle":
                    return Circle((0.5, 0.5), 0.5)
                elif frame == "polygon":
                    return RegularPolygon(
                        (0.5, 0.5), num_vars, radius=0.5, edgecolor="k"
                    )

            def _gen_axes_spines(self):
                if frame == "polygon":
                    spine = Spine(
                        axes=self,
                        spine_type="circle",
                        path=Path.unit_regular_polygon(num_vars),
                    )
                    spine.set_transform(
                        Affine2D().scale(0.5).translate(0.5, 0.5) + self.transAxes
                    )
                    return {"polar": spine}

        register_projection(RadarAxes)
        return theta

    N = 9
    theta = radar_factory(N, frame="polygon")
    data = features.values()
    labels = features.keys()
    fig, ax = plt.subplots(subplot_kw=dict(projection="radar"), figsize=(7.5, 5))
    ax.plot(theta, data)
    ax.fill(theta, data, alpha=0.4)
    ax.set_varlabels(labels)

    rgrids = np.linspace(0, 100, num=6)
    ax.set_rgrids(
        rgrids, labels=[f"{round(r)}%" for r in rgrids], fontsize=8, color="black"
    )
    ax.grid(True, color="black", linestyle="-", linewidth=0.5, alpha=0.5)

    for dd, (label, value) in enumerate(zip(labels, data)):
        ax.text(
            theta[dd] + 0.1,
            value + 5,
            f"{value:.0f}",
            horizontalalignment="left",
            verticalalignment="bottom",
            fontsize=8,
        )

    return fig