Spaces:
Running
Running
File size: 23,374 Bytes
fe15d80 1be431a 42fb43c 1be431a fe15d80 d176253 d53b62d 6af6f76 231a868 fffd7f2 038d754 67f4199 f6a92d7 fffd7f2 fe15d80 6af6f76 d176253 fe15d80 d176253 fe15d80 1be431a 6d6d84c 1be431a 206753b 038d754 1be431a fffd7f2 1be431a 6d6d84c 1be431a 6d6d84c 1be431a fffd7f2 fe15d80 1be431a c7ad932 1be431a fffd7f2 1be431a 038d754 fe15d80 1be431a 67f4199 fe15d80 f6a92d7 fffd7f2 1be431a fe15d80 1be431a c7ad932 1be431a c7ad932 1be431a c7ad932 fe15d80 c7ad932 1be431a fe15d80 1be431a fffd7f2 1be431a fe15d80 1be431a 72fe634 1be431a 9545dbd 147e661 fe15d80 1be431a fe15d80 147e661 fe15d80 1be431a d53b62d fe15d80 d53b62d cf6e402 fe15d80 1be431a 566b7f7 fe15d80 566b7f7 1be431a fe15d80 dd505ce fe15d80 dd505ce 1be431a fe15d80 16a43bc 6af6f76 fe15d80 6af6f76 fe15d80 a17017c c10af95 fe15d80 a17017c c10af95 fe15d80 6af6f76 fe15d80 6af6f76 fe15d80 6af6f76 fe15d80 6af6f76 fe15d80 6af6f76 fe15d80 6af6f76 fe15d80 6af6f76 fe15d80 65029fb 6af6f76 fe15d80 d53b62d 20f67e4 fe15d80 20f67e4 fe15d80 20f67e4 6af6f76 fe15d80 1be431a 20f67e4 fe15d80 20f67e4 1be431a fe15d80 1be431a 20f67e4 fe15d80 20f67e4 1be431a fe15d80 6d6d84c fe15d80 6af6f76 fe15d80 a17017c fe15d80 6af6f76 fe15d80 a17017c 6af6f76 fe15d80 038d754 6af6f76 2da9742 fe15d80 6af6f76 25a20c0 fe15d80 1be431a fe15d80 6d6d84c fe15d80 c38b78d 1be431a fe15d80 1be431a 6d6d84c 1be431a fd45959 1be431a c38b78d ee92837 6d6d84c 1be431a 8dcf476 fe15d80 d53b62d fe15d80 1be431a fe15d80 1be431a fe15d80 16a43bc fe15d80 1be431a 4ffd446 d176253 fe15d80 d176253 8dcf476 d176253 fe15d80 d176253 fe15d80 d176253 fe15d80 d176253 fe15d80 d176253 fe15d80 d176253 fe15d80 d176253 fe15d80 d176253 fe15d80 d176253 fe15d80 d176253 1be431a 3f7f887 1be431a 2da9742 1be431a 3f7f887 1be431a 4ffd446 fe15d80 4ffd446 fe15d80 16a43bc 1be431a fe15d80 1be431a fe15d80 6d6d84c d176253 6d6d84c 8dcf476 d53b62d 6d6d84c 1be431a fe15d80 fd45959 fe15d80 1be431a d53b62d 1be431a 16a43bc 1be431a 42f39c4 1be431a d176253 fe15d80 d176253 16a43bc 1be431a 6d6d84c 1be431a fd45959 1be431a 8dcf476 fe15d80 1be431a 6d6d84c 1be431a d53b62d 1be431a e611170 1be431a 6d6d84c 1be431a d176253 1be431a fe15d80 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 |
from utils import (
cosineSim,
googleSearch,
getSentences,
parallel_scrap,
matchingScore,
)
import gradio as gr
from urllib.request import urlopen, Request
from googleapiclient.discovery import build
import requests
import httpx
import torch
import re
from bs4 import BeautifulSoup
import numpy as np
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import asyncio
from scipy.special import softmax
from evaluate import load
from datetime import date
import nltk
import fitz
from transformers import GPT2LMHeadModel, GPT2TokenizerFast
import nltk, spacy, subprocess, torch
import plotly.graph_objects as go
import torch.nn.functional as F
import nltk
from unidecode import unidecode
import time
from utils import cos_sim_torch, embed_text
import multiprocessing
from functools import partial
import concurrent.futures
nltk.download("punkt")
from writing_analysis import (
normalize,
preprocess_text1,
preprocess_text2,
vocabulary_richness_ttr,
calculate_gunning_fog,
calculate_average_sentence_length,
calculate_average_word_length,
calculate_syntactic_tree_depth,
calculate_perplexity,
)
np.set_printoptions(suppress=True)
def plagiarism_check(
plag_option,
input,
year_from,
month_from,
day_from,
year_to,
month_to,
day_to,
domains_to_skip,
):
api_key = "AIzaSyCLyCCpOPLZWuptuPAPSg8cUIZhdEMVf6g"
api_key = "AIzaSyCS1WQDMl1IMjaXtwSd_2rA195-Yc4psQE"
api_key = "AIzaSyCB61O70B8AC3l5Kk3KMoLb6DN37B7nqIk"
# api_key = "AIzaSyCg1IbevcTAXAPYeYreps6wYWDbU0Kz8tg"
api_key = "AIzaSyA5VVwY1eEoIoflejObrxFDI0DJvtbmgW8"
cse_id = "851813e81162b4ed4"
time1 = time.perf_counter()
start = time.perf_counter()
sentences = getSentences(input)
urlCount = {}
ScoreArray = []
urlList = []
date_from = build_date(year_from, month_from, day_from)
date_to = build_date(year_to, month_to, day_to)
sort_date = f"date:r:{date_from}:{date_to}"
# get list of URLS to check
urlCount, ScoreArray = googleSearch(
plag_option,
sentences,
urlCount,
ScoreArray,
urlList,
sort_date,
domains_to_skip,
api_key,
cse_id,
)
print(f"Time for google search: {time.perf_counter()-time1}")
time1 = time.perf_counter()
print("Number of URLs: ", len(urlCount))
print(urlList)
# Scrape URLs in list
formatted_tokens = []
soups = asyncio.run(parallel_scrap(urlList))
print(f"Time for scraping: {time.perf_counter()-time1}")
time1 = time.perf_counter()
print(len(soups))
print(
"Successful scraping: "
+ str(len([x for x in soups if x is not None]))
+ "out of "
+ str(len(urlList))
)
source_embeddings = []
for i, soup in enumerate(soups):
if soup:
page_content = soup.text
source_embeddings.append(embed_text(page_content))
else:
source_embeddings.append(None)
# Populate matching scores for scrapped pages
# for i, soup in enumerate(soups):
# print(f"Analyzing {i+1} of {len(soups)} soups........................")
# if soup:
# page_content = soup.text
# for j, sent in enumerate(sentences):
# # score = matchingScore(sent, page_content)
# # score = matchingScoreWithTimeout(sent, page_content)
# score = cos_sim_torch(embed_text(sent), source_embeddings[i])
# ScoreArray[i][j] = score
def compute_cosine_similarity(args):
sent, source_embedding, i, j = args
score = cos_sim_torch(embed_text(sent), source_embedding)
return i, j, score
def main(soups, sentences):
source_embeddings = [preprocess(soup) for soup in soups]
ScoreArray = [[0 for _ in sentences] for _ in soups]
args_list = []
for i, soup in enumerate(soups):
if soup:
for j, sent in enumerate(sentences):
args_list.append((sent, source_embeddings[i], i, j))
with concurrent.futures.ProcessPoolExecutor() as executor:
results = executor.map(compute_cosine_similarity, args_list)
for i, j, score in results:
ScoreArray[i][j] = score
return ScoreArray
ScoreArray = main(soups, sentences)
print(f"Time for matching score: {time.perf_counter()-time1}")
time1 = time.perf_counter()
# ScoreArray = asyncio.run(parallel_analyze_2(soups, sentences, ScoreArray))
# print("New Score Array:\n")
# print2D(ScoreArray)
# Gradio formatting section
sentencePlag = [False] * len(sentences)
sentenceToMaxURL = [-1] * len(sentences)
for j in range(len(sentences)):
if j > 0:
maxScore = ScoreArray[sentenceToMaxURL[j - 1]][j]
sentenceToMaxURL[j] = sentenceToMaxURL[j - 1]
else:
maxScore = -1
for i in range(len(ScoreArray)):
margin = (
0.1
if (j > 0 and sentenceToMaxURL[j] == sentenceToMaxURL[j - 1])
else 0
)
if ScoreArray[i][j] - maxScore > margin:
maxScore = ScoreArray[i][j]
sentenceToMaxURL[j] = i
if maxScore > 0.5:
sentencePlag[j] = True
if (
(len(sentences) > 1)
and (sentenceToMaxURL[1] != sentenceToMaxURL[0])
and (
ScoreArray[sentenceToMaxURL[0]][0]
- ScoreArray[sentenceToMaxURL[1]][0]
< 0.1
)
):
sentenceToMaxURL[0] = sentenceToMaxURL[1]
index = np.unique(sentenceToMaxURL)
urlScore = {}
for url in index:
s = [
ScoreArray[url][sen]
for sen in range(len(sentences))
if sentenceToMaxURL[sen] == url
]
urlScore[url] = sum(s) / len(s)
index_descending = sorted(urlScore, key=urlScore.get, reverse=True)
urlMap = {}
for count, i in enumerate(index_descending):
urlMap[i] = count + 1
for i, sent in enumerate(sentences):
formatted_tokens.append(
(sent, "[" + str(urlMap[sentenceToMaxURL[i]]) + "]")
)
formatted_tokens.append(("\n", None))
formatted_tokens.append(("\n", None))
formatted_tokens.append(("\n", None))
print(formatted_tokens)
print(index_descending)
for ind in index_descending:
formatted_tokens.append(
(
urlList[ind]
+ " --- Matching Score: "
+ f"{str(round(urlScore[ind] * 100, 2))}%",
"[" + str(urlMap[ind]) + "]",
)
)
formatted_tokens.append(("\n", None))
print(f"Formatted Tokens: {formatted_tokens}")
print(f"Time for plagiarism check: {time.perf_counter()-start}")
return formatted_tokens
"""
AI DETECTION SECTION
"""
device = "cuda" if torch.cuda.is_available() else "cpu"
text_bc_model_path = "polygraf-ai/text-detect-bc-v11-4m"
text_bc_tokenizer = AutoTokenizer.from_pretrained(text_bc_model_path)
text_bc_model = AutoModelForSequenceClassification.from_pretrained(
text_bc_model_path
).to(device)
text_mc_model_path = (
"polygraf-ai/ai-text-detection-mc-robert-open-ai-detector-v4"
)
text_mc_tokenizer = AutoTokenizer.from_pretrained(text_mc_model_path)
text_mc_model = AutoModelForSequenceClassification.from_pretrained(
text_mc_model_path
).to(device)
quillbot_labels = ["Original", "QuillBot"]
quillbot_tokenizer = AutoTokenizer.from_pretrained("FacebookAI/roberta-base")
quillbot_model = AutoModelForSequenceClassification.from_pretrained(
"polygraf-ai/quillbot-detector-28k"
).to(device)
def remove_accents(input_str):
text_no_accents = unidecode(input_str)
return text_no_accents
def remove_special_characters(text):
text = remove_accents(text)
pattern = r'[^\w\s\d.,!?\'"()-;]+'
text = re.sub(pattern, "", text)
return text
def remove_special_characters_2(text):
pattern = r"[^a-zA-Z0-9 ]+"
text = re.sub(pattern, "", text)
return text
def update_character_count(text):
return f"{len(text)} characters"
def split_text_allow_complete_sentences_nltk(
text,
max_length=256,
tolerance=30,
min_last_segment_length=100,
type_det="bc",
):
sentences = nltk.sent_tokenize(text)
segments = []
current_segment = []
current_length = 0
if type_det == "bc":
tokenizer = text_bc_tokenizer
max_length = 333
elif type_det == "mc":
tokenizer = text_mc_tokenizer
max_length = 256
for sentence in sentences:
tokens = tokenizer.tokenize(sentence)
sentence_length = len(tokens)
if current_length + sentence_length <= max_length + tolerance - 2:
current_segment.append(sentence)
current_length += sentence_length
else:
if current_segment:
encoded_segment = tokenizer.encode(
" ".join(current_segment),
add_special_tokens=True,
max_length=max_length + tolerance,
truncation=True,
)
segments.append((current_segment, len(encoded_segment)))
current_segment = [sentence]
current_length = sentence_length
if current_segment:
encoded_segment = tokenizer.encode(
" ".join(current_segment),
add_special_tokens=True,
max_length=max_length + tolerance,
truncation=True,
)
segments.append((current_segment, len(encoded_segment)))
final_segments = []
for i, (seg, length) in enumerate(segments):
if i == len(segments) - 1:
if length < min_last_segment_length and len(final_segments) > 0:
prev_seg, prev_length = final_segments[-1]
combined_encoded = tokenizer.encode(
" ".join(prev_seg + seg),
add_special_tokens=True,
max_length=max_length + tolerance,
truncation=True,
)
if len(combined_encoded) <= max_length + tolerance:
final_segments[-1] = (prev_seg + seg, len(combined_encoded))
else:
final_segments.append((seg, length))
else:
final_segments.append((seg, length))
else:
final_segments.append((seg, length))
decoded_segments = []
encoded_segments = []
for seg, _ in final_segments:
encoded_segment = tokenizer.encode(
" ".join(seg),
add_special_tokens=True,
max_length=max_length + tolerance,
truncation=True,
)
decoded_segment = tokenizer.decode(encoded_segment)
decoded_segments.append(decoded_segment)
return decoded_segments
def predict_quillbot(text):
with torch.no_grad():
quillbot_model.eval()
tokenized_text = quillbot_tokenizer(
text,
padding="max_length",
truncation=True,
max_length=256,
return_tensors="pt",
).to(device)
output = quillbot_model(**tokenized_text)
output_norm = softmax(output.logits.detach().cpu().numpy(), 1)[0]
q_score = {
"QuillBot": output_norm[1].item(),
"Original": output_norm[0].item(),
}
return q_score
def predict_bc(model, tokenizer, text):
with torch.no_grad():
model.eval()
tokens = text_bc_tokenizer(
text,
padding="max_length",
truncation=True,
max_length=333,
return_tensors="pt",
).to(device)
output = model(**tokens)
output_norm = softmax(output.logits.detach().cpu().numpy(), 1)[0]
print("BC Score: ", output_norm)
return output_norm
def predict_mc(model, tokenizer, text):
with torch.no_grad():
model.eval()
tokens = text_mc_tokenizer(
text,
padding="max_length",
truncation=True,
return_tensors="pt",
max_length=256,
).to(device)
output = model(**tokens)
output_norm = softmax(output.logits.detach().cpu().numpy(), 1)[0]
print("MC Score: ", output_norm)
return output_norm
def ai_generated_test(ai_option, input):
bc_scores = []
mc_scores = []
samples_len_bc = len(
split_text_allow_complete_sentences_nltk(input, type_det="bc")
)
samples_len_mc = len(
split_text_allow_complete_sentences_nltk(input, type_det="mc")
)
segments_bc = split_text_allow_complete_sentences_nltk(input, type_det="bc")
segments_mc = split_text_allow_complete_sentences_nltk(input, type_det="bc")
for i in range(samples_len_bc):
cleaned_text_bc = remove_special_characters(segments_bc[i])
bc_score = predict_bc(text_bc_model, text_bc_tokenizer, cleaned_text_bc)
bc_scores.append(bc_score)
for i in range(samples_len_mc):
cleaned_text_mc = remove_special_characters(segments_mc[i])
mc_score = predict_mc(text_mc_model, text_mc_tokenizer, cleaned_text_mc)
mc_scores.append(mc_score)
bc_scores_array = np.array(bc_scores)
mc_scores_array = np.array(mc_scores)
average_bc_scores = np.mean(bc_scores_array, axis=0)
average_mc_scores = np.mean(mc_scores_array, axis=0)
bc_score_list = average_bc_scores.tolist()
mc_score_list = average_mc_scores.tolist()
bc_score = {"AI": bc_score_list[1], "HUMAN": bc_score_list[0]}
mc_score = {}
label_map = ["OpenAI GPT", "Mistral", "CLAUDE", "Gemini", "LLAMA 2"]
for score, label in zip(mc_score_list, label_map):
mc_score[label.upper()] = score
sum_prob = 1 - bc_score["HUMAN"]
for key, value in mc_score.items():
mc_score[key] = value * sum_prob
if ai_option == "Human vs AI":
mc_score = {}
if sum_prob < 0.01:
mc_score = {}
return bc_score, mc_score
else:
return bc_score, mc_score
# COMBINED
def main(
ai_option,
plag_option,
input,
# models,
year_from,
month_from,
day_from,
year_to,
month_to,
day_to,
domains_to_skip,
):
formatted_tokens = plagiarism_check(
plag_option,
input,
year_from,
month_from,
day_from,
year_to,
month_to,
day_to,
domains_to_skip,
)
depth_analysis_plot = depth_analysis(input)
bc_score, mc_score = ai_generated_test(ai_option, input)
quilscore = predict_quillbot(input)
return (
bc_score,
mc_score,
formatted_tokens,
depth_analysis_plot,
quilscore,
)
def build_date(year, month, day):
return f"{year}{months[month]}{day}"
def len_validator(text):
min_tokens = 200
lengt = len(text_bc_tokenizer.tokenize(text=text, return_tensors="pt"))
if lengt < min_tokens:
return f"Warning! Input length is {lengt}. Please input a text that is greater than {min_tokens} tokens long. Recommended length {min_tokens*2} tokens."
else:
return f"Input length ({lengt}) is satisified."
def extract_text_from_pdf(pdf_path):
doc = fitz.open(pdf_path)
text = ""
for page in doc:
text += page.get_text()
return text
# DEPTH ANALYSIS
print("loading depth analysis")
nltk.download("stopwords")
nltk.download("punkt")
command = ["python3", "-m", "spacy", "download", "en_core_web_sm"]
# Execute the command
subprocess.run(command)
nlp = spacy.load("en_core_web_sm")
# for perplexity
model_id = "gpt2"
gpt2_model = GPT2LMHeadModel.from_pretrained(model_id).to(device)
gpt2_tokenizer = GPT2TokenizerFast.from_pretrained(model_id)
def depth_analysis(input_text):
# vocanulary richness
processed_words = preprocess_text1(input_text)
ttr_value = vocabulary_richness_ttr(processed_words)
# readability
gunning_fog = calculate_gunning_fog(input_text)
gunning_fog_norm = normalize(gunning_fog, min_value=0, max_value=20)
# average sentence length and average word length
words, sentences = preprocess_text2(input_text)
average_sentence_length = calculate_average_sentence_length(sentences)
average_word_length = calculate_average_word_length(words)
average_sentence_length_norm = normalize(
average_sentence_length, min_value=0, max_value=40
)
average_word_length_norm = normalize(
average_word_length, min_value=0, max_value=8
)
# syntactic_tree_depth
average_tree_depth = calculate_syntactic_tree_depth(nlp, input_text)
average_tree_depth_norm = normalize(
average_tree_depth, min_value=0, max_value=10
)
# perplexity
perplexity = calculate_perplexity(
input_text, gpt2_model, gpt2_tokenizer, device
)
perplexity_norm = normalize(perplexity, min_value=0, max_value=30)
features = {
"readability": gunning_fog_norm,
"syntactic tree depth": average_tree_depth_norm,
"vocabulary richness": ttr_value,
"perplexity": perplexity_norm,
"average sentence length": average_sentence_length_norm,
"average word length": average_word_length_norm,
}
print(features)
fig = go.Figure()
fig.add_trace(
go.Scatterpolar(
r=list(features.values()),
theta=list(features.keys()),
fill="toself",
name="Radar Plot",
)
)
fig.update_layout(
polar=dict(
radialaxis=dict(
visible=True,
range=[0, 100],
)
),
showlegend=False,
# autosize=False,
# width=600,
# height=600,
margin=dict(
l=10,
r=20,
b=10,
t=10,
# pad=100
),
)
return fig
# START OF GRADIO
title = "Copyright Checker"
months = {
"January": "01",
"February": "02",
"March": "03",
"April": "04",
"May": "05",
"June": "06",
"July": "07",
"August": "08",
"September": "09",
"October": "10",
"November": "11",
"December": "12",
}
with gr.Blocks() as demo:
today = date.today()
# dd/mm/YY
d1 = today.strftime("%d/%B/%Y")
d1 = d1.split("/")
model_list = ["OpenAI GPT", "Mistral", "CLAUDE", "Gemini", "LLAMA2"]
domain_list = ["com", "org", "net", "int", "edu", "gov", "mil"]
gr.Markdown(
"""
# Copyright Checker
"""
)
with gr.Row():
input_text = gr.Textbox(label="Input text", lines=6, placeholder="")
file_input = gr.File(label="Upload PDF")
file_input.change(
fn=extract_text_from_pdf, inputs=file_input, outputs=input_text
)
char_count = gr.Textbox(label="Minumum Character Limit Check")
input_text.change(fn=len_validator, inputs=input_text, outputs=char_count)
with gr.Row():
with gr.Column():
ai_option = gr.Radio(
["Human vs AI", "Human vs AI Source Models"],
label="Choose an option please.",
)
with gr.Column():
plag_option = gr.Radio(
["Standard", "Advanced"], label="Choose an option please."
)
with gr.Row():
with gr.Column():
only_ai_btn = gr.Button("AI Check")
with gr.Column():
only_plagiarism_btn = gr.Button("Source Check")
with gr.Row():
quillbot_check = gr.Button("Humanized Text Check (Quillbot)")
with gr.Row():
depth_analysis_btn = gr.Button("Detailed Writing Analysis")
with gr.Row():
full_check_btn = gr.Button("Full Check")
gr.Markdown(
"""
## Output
"""
)
# models = gr.Dropdown(
# model_list,
# value=model_list,
# multiselect=True,
# label="Models to test against",
# )
with gr.Row():
with gr.Column():
bcLabel = gr.Label(label="Source")
with gr.Column():
mcLabel = gr.Label(label="Creator")
with gr.Row():
QLabel = gr.Label(label="Humanized")
with gr.Group():
with gr.Row():
month_from = gr.Dropdown(
choices=months,
label="From Month",
value="January",
interactive=True,
)
day_from = gr.Textbox(label="From Day", value="01")
year_from = gr.Textbox(label="From Year", value="2000")
# from_date_button = gr.Button("Submit")
with gr.Row():
month_to = gr.Dropdown(
choices=months,
label="To Month",
value=d1[1],
interactive=True,
)
day_to = gr.Textbox(label="To Day", value=d1[0])
year_to = gr.Textbox(label="To Year", value=d1[2])
# to_date_button = gr.Button("Submit")
with gr.Row():
domains_to_skip = gr.Dropdown(
domain_list,
multiselect=True,
label="Domain To Skip",
)
with gr.Row():
with gr.Column():
sentenceBreakdown = gr.HighlightedText(
label="Source Detection Sentence Breakdown",
combine_adjacent=True,
color_map={
"[1]": "red",
"[2]": "orange",
"[3]": "yellow",
"[4]": "green",
},
)
with gr.Row():
with gr.Column():
writing_analysis_plot = gr.Plot(label="Writing Analysis Plot")
full_check_btn.click(
fn=main,
inputs=[
ai_option,
plag_option,
input_text,
# models,
year_from,
month_from,
day_from,
year_to,
month_to,
day_to,
domains_to_skip,
],
outputs=[
bcLabel,
mcLabel,
sentenceBreakdown,
writing_analysis_plot,
QLabel,
],
api_name="main",
)
only_ai_btn.click(
fn=ai_generated_test,
inputs=[ai_option, input_text],
outputs=[
bcLabel,
mcLabel,
],
api_name="ai_check",
)
quillbot_check.click(
fn=predict_quillbot,
inputs=[input_text],
outputs=[QLabel],
api_name="quillbot_check",
)
only_plagiarism_btn.click(
fn=plagiarism_check,
inputs=[
plag_option,
input_text,
year_from,
month_from,
day_from,
year_to,
month_to,
day_to,
domains_to_skip,
],
outputs=[
sentenceBreakdown,
],
api_name="plagiarism_check",
)
depth_analysis_btn.click(
fn=depth_analysis,
inputs=[input_text],
outputs=[writing_analysis_plot],
api_name="depth_analysis",
)
date_from = ""
date_to = ""
demo.launch(
share=True, server_name="0.0.0.0", auth=("polygraf-admin", "test@aisd")
)
|