copyright_checker / predictors.py
aliasgerovs's picture
Updated
b472976
raw
history blame
16.9 kB
import torch
import numpy as np
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import nltk
import torch.nn.functional as F
import nltk
from scipy.special import softmax
import yaml
from utils import *
import joblib
from optimum.bettertransformer import BetterTransformer
import gc
from cleantext import clean
import gradio as gr
from tqdm.auto import tqdm
from transformers import pipeline
from transformers import AutoModelForSequenceClassification, AutoTokenizer
import nltk
from nltk.tokenize import sent_tokenize
from optimum.pipelines import pipeline
with open("config.yaml", "r") as file:
params = yaml.safe_load(file)
nltk.download("punkt")
nltk.download("stopwords")
device_needed = "cuda" if torch.cuda.is_available() else "cpu"
device = 'cpu'
text_bc_model_path = params["TEXT_BC_MODEL_PATH"]
text_mc_model_path = params["TEXT_MC_MODEL_PATH"]
text_quillbot_model_path = params["TEXT_QUILLBOT_MODEL_PATH"]
text_1on1_models = params["TEXT_1ON1_MODEL"]
quillbot_labels = params["QUILLBOT_LABELS"]
mc_label_map = params["MC_OUTPUT_LABELS"]
text_1on1_label_map = params["1ON1_OUTPUT_LABELS"]
mc_token_size = int(params["MC_TOKEN_SIZE"])
bc_token_size = int(params["BC_TOKEN_SIZE"])
bias_checker_model_name = params['BIAS_CHECKER_MODEL_PATH']
bias_corrector_model_name = params['BIAS_CORRECTOR_MODEL_PATH']
text_bc_tokenizer = AutoTokenizer.from_pretrained(text_bc_model_path)
text_bc_model = AutoModelForSequenceClassification.from_pretrained(
text_bc_model_path
).to(device)
text_mc_tokenizer = AutoTokenizer.from_pretrained(text_mc_model_path)
text_mc_model = AutoModelForSequenceClassification.from_pretrained(
text_mc_model_path
).to(device)
quillbot_tokenizer = AutoTokenizer.from_pretrained(text_quillbot_model_path)
quillbot_model = AutoModelForSequenceClassification.from_pretrained(
text_quillbot_model_path
).to(device)
tokenizers_1on1 = {}
models_1on1 = {}
for model_name, model in zip(mc_label_map, text_1on1_models):
tokenizers_1on1[model_name] = AutoTokenizer.from_pretrained(model)
models_1on1[model_name] = (
AutoModelForSequenceClassification.from_pretrained(model).to(device)
)
# proxy models for explainability
mini_bc_model_name = "polygraf-ai/bc-model-bert-mini"
bc_tokenizer_mini = AutoTokenizer.from_pretrained(mini_bc_model_name)
bc_model_mini = AutoModelForSequenceClassification.from_pretrained(
mini_bc_model_name
).to(device_needed)
mini_humanizer_model_name = "polygraf-ai/quillbot-detector-bert-mini-9K"
humanizer_tokenizer_mini = AutoTokenizer.from_pretrained(
mini_humanizer_model_name
)
humanizer_model_mini = AutoModelForSequenceClassification.from_pretrained(
mini_humanizer_model_name
).to(device_needed)
bc_model_mini = BetterTransformer.transform(bc_model_mini)
humanizer_model_mini = BetterTransformer.transform(humanizer_model_mini)
text_bc_model = BetterTransformer.transform(text_bc_model)
text_mc_model = BetterTransformer.transform(text_mc_model)
quillbot_model = BetterTransformer.transform(quillbot_model)
bias_model_checker = AutoModelForSequenceClassification.from_pretrained(bias_checker_model_name)
tokenizer = AutoTokenizer.from_pretrained(bias_checker_model_name)
bias_model_checker = BetterTransformer.transform(bias_model_checker, keep_original_model=False)
bias_checker = pipeline(
"text-classification",
model=bias_checker_model_name,
tokenizer=bias_checker_model_name,
)
gc.collect()
bias_corrector = pipeline( "text2text-generation", model=bias_corrector_model_name, accelerator="ort")
# model score calibration
iso_reg = joblib.load("isotonic_regression_model.joblib")
def split_text(text: str) -> list:
sentences = sent_tokenize(text)
return [[sentence] for sentence in sentences]
def correct_text(text: str, bias_checker, bias_corrector, separator: str = " ") -> tuple:
sentence_batches = split_text(text)
corrected_text = []
corrections = []
for batch in tqdm(sentence_batches, total=len(sentence_batches), desc="correcting text.."):
raw_text = " ".join(batch)
results = bias_checker(raw_text)
if results[0]["label"] != "LABEL_1" or (results[0]["label"] == "LABEL_1" and results[0]["score"] < 0.9):
corrected_batch = bias_corrector(raw_text)
corrected_version = corrected_batch[0]["generated_text"]
corrected_text.append(corrected_version)
corrections.append((raw_text, corrected_version))
else:
corrected_text.append(raw_text)
corrected_text = separator.join(corrected_text)
return corrected_text, corrections
def update(text: str):
text = clean(text, lower=False)
corrected_text, corrections = correct_text(text, bias_checker, bias_corrector)
corrections_display = "\n\n".join([f"Original: {orig}\nCorrected: {corr}" for orig, corr in corrections])
return corrected_text, corrections_display
def split_text_allow_complete_sentences_nltk(
text,
max_length=256,
tolerance=30,
min_last_segment_length=100,
type_det="bc",
):
sentences = nltk.sent_tokenize(text)
segments = []
current_segment = []
current_length = 0
if type_det == "bc":
tokenizer = text_bc_tokenizer
max_length = bc_token_size
elif type_det == "mc":
tokenizer = text_mc_tokenizer
max_length = mc_token_size
for sentence in sentences:
tokens = tokenizer.tokenize(sentence)
sentence_length = len(tokens)
if current_length + sentence_length <= max_length + tolerance - 2:
current_segment.append(sentence)
current_length += sentence_length
else:
if current_segment:
encoded_segment = tokenizer.encode(
" ".join(current_segment),
add_special_tokens=True,
max_length=max_length + tolerance,
truncation=True,
)
segments.append((current_segment, len(encoded_segment)))
current_segment = [sentence]
current_length = sentence_length
if current_segment:
encoded_segment = tokenizer.encode(
" ".join(current_segment),
add_special_tokens=True,
max_length=max_length + tolerance,
truncation=True,
)
segments.append((current_segment, len(encoded_segment)))
final_segments = []
for i, (seg, length) in enumerate(segments):
if i == len(segments) - 1:
if length < min_last_segment_length and len(final_segments) > 0:
prev_seg, prev_length = final_segments[-1]
combined_encoded = tokenizer.encode(
" ".join(prev_seg + seg),
add_special_tokens=True,
max_length=max_length + tolerance,
truncation=True,
)
if len(combined_encoded) <= max_length + tolerance:
final_segments[-1] = (prev_seg + seg, len(combined_encoded))
else:
final_segments.append((seg, length))
else:
final_segments.append((seg, length))
else:
final_segments.append((seg, length))
decoded_segments = []
encoded_segments = []
for seg, _ in final_segments:
encoded_segment = tokenizer.encode(
" ".join(seg),
add_special_tokens=True,
max_length=max_length + tolerance,
truncation=True,
)
decoded_segment = tokenizer.decode(encoded_segment)
decoded_segments.append(decoded_segment)
return decoded_segments
def predict_quillbot(text):
with torch.no_grad():
quillbot_model.eval()
tokenized_text = quillbot_tokenizer(
text,
padding="max_length",
truncation=True,
max_length=256,
return_tensors="pt",
).to(device)
output = quillbot_model(**tokenized_text)
output_norm = softmax(output.logits.detach().cpu().numpy(), 1)[0]
q_score = {
"Humanized": output_norm[1].item(),
"Original": output_norm[0].item(),
}
return q_score
def predict_for_explainanility(text, model_type=None):
if model_type == "quillbot":
cleaning = False
max_length = 256
model = humanizer_model_mini
tokenizer = humanizer_tokenizer_mini
elif model_type == "bc":
cleaning = True
max_length = 512
model = bc_model_mini
tokenizer = bc_tokenizer_mini
else:
raise ValueError("Invalid model type")
with torch.no_grad():
if cleaning:
text = [remove_special_characters(t) for t in text]
tokenized_text = tokenizer(
text,
return_tensors="pt",
padding="max_length",
truncation=True,
max_length=max_length,
).to(device_needed)
outputs = model(**tokenized_text)
tensor_logits = outputs[0]
probas = F.softmax(tensor_logits).detach().cpu().numpy()
return probas
def predict_bc(model, tokenizer, text):
with torch.no_grad():
model.eval()
tokens = text_bc_tokenizer(
text,
padding="max_length",
truncation=True,
max_length=bc_token_size,
return_tensors="pt",
).to(device)
output = model(**tokens)
output_norm = softmax(output.logits.detach().cpu().numpy(), 1)[0]
return output_norm
def predict_mc(model, tokenizer, text):
with torch.no_grad():
model.eval()
tokens = text_mc_tokenizer(
text,
padding="max_length",
truncation=True,
return_tensors="pt",
max_length=mc_token_size,
).to(device)
output = model(**tokens)
output_norm = softmax(output.logits.detach().cpu().numpy(), 1)[0]
return output_norm
def predict_mc_scores(input):
bc_scores = []
mc_scores = []
samples_len_bc = len(
split_text_allow_complete_sentences_nltk(input, type_det="bc")
)
segments_bc = split_text_allow_complete_sentences_nltk(input, type_det="bc")
for i in range(samples_len_bc):
cleaned_text_bc = remove_special_characters(segments_bc[i])
bc_score = predict_bc(text_bc_model, text_bc_tokenizer, cleaned_text_bc)
bc_scores.append(bc_score)
bc_scores_array = np.array(bc_scores)
average_bc_scores = np.mean(bc_scores_array, axis=0)
bc_score_list = average_bc_scores.tolist()
bc_score = {"AI": bc_score_list[1], "HUMAN": bc_score_list[0]}
segments_mc = split_text_allow_complete_sentences_nltk(input, type_det="mc")
samples_len_mc = len(
split_text_allow_complete_sentences_nltk(input, type_det="mc")
)
for i in range(samples_len_mc):
cleaned_text_mc = remove_special_characters(segments_mc[i])
mc_score = predict_mc(text_mc_model, text_mc_tokenizer, cleaned_text_mc)
mc_scores.append(mc_score)
mc_scores_array = np.array(mc_scores)
average_mc_scores = np.mean(mc_scores_array, axis=0)
mc_score_list = average_mc_scores.tolist()
mc_score = {}
for score, label in zip(mc_score_list, mc_label_map):
mc_score[label.upper()] = score
sum_prob = 1 - bc_score["HUMAN"]
for key, value in mc_score.items():
mc_score[key] = value * sum_prob
if sum_prob < 0.01:
mc_score = {}
return mc_score
def predict_bc_scores(input):
bc_scores = []
samples_len_bc = len(
split_text_allow_complete_sentences_nltk(input, type_det="bc")
)
segments_bc = split_text_allow_complete_sentences_nltk(input, type_det="bc")
for i in range(samples_len_bc):
cleaned_text_bc = remove_special_characters(segments_bc[i])
bc_score = predict_bc(text_bc_model, text_bc_tokenizer, cleaned_text_bc)
bc_scores.append(bc_score)
bc_scores_array = np.array(bc_scores)
average_bc_scores = np.mean(bc_scores_array, axis=0)
bc_score_list = average_bc_scores.tolist()
print(
f"Original BC scores: AI: {bc_score_list[1]}, HUMAN: {bc_score_list[0]}"
)
# isotonic regression calibration
ai_score = iso_reg.predict([bc_score_list[1]])[0]
human_score = 1 - ai_score
bc_score = {"AI": ai_score, "HUMAN": human_score}
print(f"Calibration BC scores: AI: {ai_score}, HUMAN: {human_score}")
print(f"Input Text: {cleaned_text_bc}")
return bc_score
def predict_1on1(model, tokenizer, text):
with torch.no_grad():
model.eval()
tokens = tokenizer(
text,
padding="max_length",
truncation=True,
return_tensors="pt",
max_length=mc_token_size,
).to(device)
output = model(**tokens)
output_norm = softmax(output.logits.detach().cpu().numpy(), 1)[0]
return output_norm
def predict_1on1_combined(input):
predictions = []
for i, model in enumerate(text_1on1_models):
predictions.append(
predict_1on1(models_1on1[model], tokenizers_1on1[model], input)[1]
)
return predictions
def predict_1on1_single(input, model):
predictions = predict_1on1(
models_1on1[model], tokenizers_1on1[model], input
)[1]
return predictions
def predict_mc_scores(input, models):
if len(models) == 0:
return {}
print(f"Models to Test: {models}")
# BC SCORE
bc_scores = []
samples_len_bc = len(
split_text_allow_complete_sentences_nltk(input, type_det="bc")
)
segments_bc = split_text_allow_complete_sentences_nltk(input, type_det="bc")
for i in range(samples_len_bc):
cleaned_text_bc = remove_special_characters(segments_bc[i])
bc_score = predict_bc(text_bc_model, text_bc_tokenizer, cleaned_text_bc)
bc_scores.append(bc_score)
bc_scores_array = np.array(bc_scores)
average_bc_scores = np.mean(bc_scores_array, axis=0)
bc_score_list = average_bc_scores.tolist()
print(
f"Original BC scores: AI: {bc_score_list[1]}, HUMAN: {bc_score_list[0]}"
)
# isotonic regression calibration
ai_score = iso_reg.predict([bc_score_list[1]])[0]
human_score = 1 - ai_score
bc_score = {"AI": ai_score, "HUMAN": human_score}
print(f"Calibration BC scores: AI: {ai_score}, HUMAN: {human_score}")
# MC SCORE
if len(models) > 1:
print("Starting MC")
mc_scores = []
segments_mc = split_text_allow_complete_sentences_nltk(
input, type_det="mc"
)
samples_len_mc = len(
split_text_allow_complete_sentences_nltk(input, type_det="mc")
)
for i in range(samples_len_mc):
cleaned_text_mc = remove_special_characters(segments_mc[i])
mc_score = predict_mc(
text_mc_model, text_mc_tokenizer, cleaned_text_mc
)
mc_scores.append(mc_score)
mc_scores_array = np.array(mc_scores)
average_mc_scores = np.mean(mc_scores_array, axis=0)
mc_score_list = average_mc_scores.tolist()
mc_score = {}
for score, label in zip(mc_score_list, mc_label_map):
mc_score[label.upper()] = score
mc_score = {
key: mc_score[key.upper()]
for key in models
if key.upper() in mc_score
}
total = sum(mc_score.values())
# Normalize each value by dividing it by the total
mc_score = {key: value / total for key, value in mc_score.items()}
sum_prob = 1 - bc_score["HUMAN"]
for key, value in mc_score.items():
mc_score[key] = value * sum_prob
print("MC Score:", mc_score)
if sum_prob < 0.01:
mc_score = {}
elif len(models) == 1:
print("Starting 1on1")
mc_scores = []
segments_mc = split_text_allow_complete_sentences_nltk(
input, type_det="mc"
)
samples_len_mc = len(
split_text_allow_complete_sentences_nltk(input, type_det="mc")
)
for i in range(samples_len_mc):
cleaned_text_mc = remove_special_characters(segments_mc[i])
mc_score = predict_1on1_single(cleaned_text_mc, models[0])
mc_scores.append(mc_score)
mc_scores_array = np.array(mc_scores)
average_mc_scores = np.mean(mc_scores_array, axis=0)
print(average_mc_scores)
mc_score_list = average_mc_scores.tolist()
mc_score = {}
mc_score[models[0].upper()] = mc_score_list
mc_score["OTHER"] = 1 - mc_score_list
sum_prob = 1 - bc_score["HUMAN"]
for key, value in mc_score.items():
mc_score[key] = value * sum_prob
if sum_prob < 0.01:
mc_score = {}
return mc_score