copyright_checker / predictors.py
minko186's picture
smoke test showed previous MC model performed better, commenting out 1on1
09f0b85
raw
history blame
10.7 kB
import requests
import httpx
import torch
import re
from bs4 import BeautifulSoup
import numpy as np
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import asyncio
from evaluate import load
from datetime import date
import nltk
from transformers import GPT2LMHeadModel, GPT2TokenizerFast
import plotly.graph_objects as go
import torch.nn.functional as F
import nltk
from unidecode import unidecode
import time
from scipy.special import softmax
import yaml
import os
from utils import *
with open("config.yaml", "r") as file:
params = yaml.safe_load(file)
nltk.download("punkt")
nltk.download("stopwords")
device = "cuda" if torch.cuda.is_available() else "cpu"
text_bc_model_path = params["TEXT_BC_MODEL_PATH"]
text_mc_model_path = params["TEXT_MC_MODEL_PATH"]
text_quillbot_model_path = params["TEXT_QUILLBOT_MODEL_PATH"]
text_1on1_models = params["TEXT_1ON1_MODEL"]
quillbot_labels = params["QUILLBOT_LABELS"]
mc_label_map = params["MC_OUTPUT_LABELS"]
text_1on1_label_map = params["1ON1_OUTPUT_LABELS"]
mc_token_size = int(params["MC_TOKEN_SIZE"])
bc_token_size = int(params["BC_TOKEN_SIZE"])
text_bc_tokenizer = AutoTokenizer.from_pretrained(text_bc_model_path)
text_bc_model = AutoModelForSequenceClassification.from_pretrained(
text_bc_model_path
).to(device)
text_mc_tokenizer = AutoTokenizer.from_pretrained(text_mc_model_path)
text_mc_model = AutoModelForSequenceClassification.from_pretrained(
text_mc_model_path
).to(device)
quillbot_tokenizer = AutoTokenizer.from_pretrained(text_quillbot_model_path)
quillbot_model = AutoModelForSequenceClassification.from_pretrained(
text_quillbot_model_path
).to(device)
# tokenizers_1on1 = {}
# models_1on1 = {}
# for model in text_1on1_models:
# tokenizers_1on1[model] = AutoTokenizer.from_pretrained(model)
# models_1on1[model] = AutoModelForSequenceClassification.from_pretrained(
# model
# ).to(device)
def split_text_allow_complete_sentences_nltk(
text,
max_length=256,
tolerance=30,
min_last_segment_length=100,
type_det="bc",
):
sentences = nltk.sent_tokenize(text)
segments = []
current_segment = []
current_length = 0
if type_det == "bc":
tokenizer = text_bc_tokenizer
max_length = bc_token_size
elif type_det == "mc":
tokenizer = text_mc_tokenizer
max_length = mc_token_size
for sentence in sentences:
tokens = tokenizer.tokenize(sentence)
sentence_length = len(tokens)
if current_length + sentence_length <= max_length + tolerance - 2:
current_segment.append(sentence)
current_length += sentence_length
else:
if current_segment:
encoded_segment = tokenizer.encode(
" ".join(current_segment),
add_special_tokens=True,
max_length=max_length + tolerance,
truncation=True,
)
segments.append((current_segment, len(encoded_segment)))
current_segment = [sentence]
current_length = sentence_length
if current_segment:
encoded_segment = tokenizer.encode(
" ".join(current_segment),
add_special_tokens=True,
max_length=max_length + tolerance,
truncation=True,
)
segments.append((current_segment, len(encoded_segment)))
final_segments = []
for i, (seg, length) in enumerate(segments):
if i == len(segments) - 1:
if length < min_last_segment_length and len(final_segments) > 0:
prev_seg, prev_length = final_segments[-1]
combined_encoded = tokenizer.encode(
" ".join(prev_seg + seg),
add_special_tokens=True,
max_length=max_length + tolerance,
truncation=True,
)
if len(combined_encoded) <= max_length + tolerance:
final_segments[-1] = (prev_seg + seg, len(combined_encoded))
else:
final_segments.append((seg, length))
else:
final_segments.append((seg, length))
else:
final_segments.append((seg, length))
decoded_segments = []
encoded_segments = []
for seg, _ in final_segments:
encoded_segment = tokenizer.encode(
" ".join(seg),
add_special_tokens=True,
max_length=max_length + tolerance,
truncation=True,
)
decoded_segment = tokenizer.decode(encoded_segment)
decoded_segments.append(decoded_segment)
return decoded_segments
def predict_quillbot(text):
with torch.no_grad():
quillbot_model.eval()
tokenized_text = quillbot_tokenizer(
text,
padding="max_length",
truncation=True,
max_length=256,
return_tensors="pt",
).to(device)
output = quillbot_model(**tokenized_text)
output_norm = softmax(output.logits.detach().cpu().numpy(), 1)[0]
q_score = {
"Humanized": output_norm[1].item(),
"Original": output_norm[0].item(),
}
return q_score
def predict_bc(model, tokenizer, text):
with torch.no_grad():
model.eval()
tokens = text_bc_tokenizer(
text,
padding="max_length",
truncation=True,
max_length=bc_token_size,
return_tensors="pt",
).to(device)
output = model(**tokens)
output_norm = softmax(output.logits.detach().cpu().numpy(), 1)[0]
return output_norm
def predict_mc(model, tokenizer, text):
with torch.no_grad():
model.eval()
tokens = text_mc_tokenizer(
text,
padding="max_length",
truncation=True,
return_tensors="pt",
max_length=mc_token_size,
).to(device)
output = model(**tokens)
output_norm = softmax(output.logits.detach().cpu().numpy(), 1)[0]
return output_norm
def predict_mc_scores(input):
bc_scores = []
mc_scores = []
samples_len_bc = len(
split_text_allow_complete_sentences_nltk(input, type_det="bc")
)
segments_bc = split_text_allow_complete_sentences_nltk(input, type_det="bc")
for i in range(samples_len_bc):
cleaned_text_bc = remove_special_characters(segments_bc[i])
bc_score = predict_bc(text_bc_model, text_bc_tokenizer, cleaned_text_bc)
bc_scores.append(bc_score)
bc_scores_array = np.array(bc_scores)
average_bc_scores = np.mean(bc_scores_array, axis=0)
bc_score_list = average_bc_scores.tolist()
bc_score = {"AI": bc_score_list[1], "HUMAN": bc_score_list[0]}
segments_mc = split_text_allow_complete_sentences_nltk(input, type_det="mc")
samples_len_mc = len(
split_text_allow_complete_sentences_nltk(input, type_det="mc")
)
for i in range(samples_len_mc):
cleaned_text_mc = remove_special_characters(segments_mc[i])
mc_score = predict_mc(text_mc_model, text_mc_tokenizer, cleaned_text_mc)
mc_scores.append(mc_score)
mc_scores_array = np.array(mc_scores)
average_mc_scores = np.mean(mc_scores_array, axis=0)
mc_score_list = average_mc_scores.tolist()
mc_score = {}
for score, label in zip(mc_score_list, mc_label_map):
mc_score[label.upper()] = score
sum_prob = 1 - bc_score["HUMAN"]
for key, value in mc_score.items():
mc_score[key] = value * sum_prob
if sum_prob < 0.01:
mc_score = {}
return mc_score
def predict_bc_scores(input):
bc_scores = []
mc_scores = []
samples_len_bc = len(
split_text_allow_complete_sentences_nltk(input, type_det="bc")
)
segments_bc = split_text_allow_complete_sentences_nltk(input, type_det="bc")
for i in range(samples_len_bc):
cleaned_text_bc = remove_special_characters(segments_bc[i])
bc_score = predict_bc(text_bc_model, text_bc_tokenizer, cleaned_text_bc)
bc_scores.append(bc_score)
bc_scores_array = np.array(bc_scores)
average_bc_scores = np.mean(bc_scores_array, axis=0)
bc_score_list = average_bc_scores.tolist()
bc_score = {"AI": bc_score_list[1], "HUMAN": bc_score_list[0]}
return bc_score
def predict_1on1(model, tokenizer, text):
with torch.no_grad():
model.eval()
tokens = tokenizer(
text,
padding="max_length",
truncation=True,
return_tensors="pt",
max_length=mc_token_size,
).to(device)
output = model(**tokens)
output_norm = softmax(output.logits.detach().cpu().numpy(), 1)[0]
return output_norm
def predict_1on1_combined(input):
predictions = []
for i, model in enumerate(text_1on1_models):
predictions.append(
predict_1on1(models_1on1[model], tokenizers_1on1[model], input)[1]
)
return predictions
def predict_1on1_scores(input):
# BC SCORE
bc_scores = []
samples_len_bc = len(
split_text_allow_complete_sentences_nltk(input, type_det="bc")
)
segments_bc = split_text_allow_complete_sentences_nltk(input, type_det="bc")
for i in range(samples_len_bc):
cleaned_text_bc = remove_special_characters(segments_bc[i])
bc_score = predict_bc(text_bc_model, text_bc_tokenizer, cleaned_text_bc)
bc_scores.append(bc_score)
bc_scores_array = np.array(bc_scores)
average_bc_scores = np.mean(bc_scores_array, axis=0)
bc_score_list = average_bc_scores.tolist()
bc_score = {"AI": bc_score_list[1], "HUMAN": bc_score_list[0]}
# MC SCORE
mc_scores = []
segments_mc = split_text_allow_complete_sentences_nltk(input, type_det="mc")
samples_len_mc = len(
split_text_allow_complete_sentences_nltk(input, type_det="mc")
)
for i in range(samples_len_mc):
cleaned_text_mc = remove_special_characters(segments_mc[i])
mc_score = predict_1on1_combined(cleaned_text_mc)
mc_scores.append(mc_score)
mc_scores_array = np.array(mc_scores)
average_mc_scores = np.mean(mc_scores_array, axis=0)
normalized_mc_scores = average_mc_scores / np.sum(average_mc_scores)
mc_score_list = normalized_mc_scores.tolist()
mc_score = {}
for score, label in zip(mc_score_list, text_1on1_label_map):
mc_score[label.upper()] = score
sum_prob = 1 - bc_score["HUMAN"]
for key, value in mc_score.items():
mc_score[key] = value * sum_prob
if sum_prob < 0.01:
mc_score = {}
return mc_score