Spaces:
Sleeping
Sleeping
eljanmahammadli
commited on
Commit
·
a00beed
1
Parent(s):
38d87ea
added proxy model for humanizer highlighter
Browse files- isotonic_regression_model.joblib +0 -0
- predictors.py +22 -7
- requirements.txt +2 -1
isotonic_regression_model.joblib
ADDED
Binary file (2 kB). View file
|
|
predictors.py
CHANGED
@@ -19,6 +19,7 @@ from scipy.special import softmax
|
|
19 |
import yaml
|
20 |
import os
|
21 |
from utils import *
|
|
|
22 |
|
23 |
with open("config.yaml", "r") as file:
|
24 |
params = yaml.safe_load(file)
|
@@ -55,11 +56,19 @@ for model_name, model in zip(mc_label_map, text_1on1_models):
|
|
55 |
).to(device)
|
56 |
|
57 |
# proxy models for explainability
|
58 |
-
|
59 |
-
bc_tokenizer_mini = AutoTokenizer.from_pretrained(
|
60 |
-
bc_model_mini = AutoModelForSequenceClassification.from_pretrained(
|
61 |
-
|
62 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
|
65 |
def split_text_allow_complete_sentences_nltk(
|
@@ -164,8 +173,8 @@ def predict_for_explainanility(text, model_type=None):
|
|
164 |
if model_type == "quillbot":
|
165 |
cleaning = False
|
166 |
max_length = 256
|
167 |
-
model =
|
168 |
-
tokenizer =
|
169 |
elif model_type == "bc":
|
170 |
cleaning = True
|
171 |
max_length = 512
|
@@ -267,6 +276,12 @@ def predict_bc_scores(input):
|
|
267 |
average_bc_scores = np.mean(bc_scores_array, axis=0)
|
268 |
bc_score_list = average_bc_scores.tolist()
|
269 |
bc_score = {"AI": bc_score_list[1], "HUMAN": bc_score_list[0]}
|
|
|
|
|
|
|
|
|
|
|
|
|
270 |
return bc_score
|
271 |
|
272 |
|
|
|
19 |
import yaml
|
20 |
import os
|
21 |
from utils import *
|
22 |
+
import joblib
|
23 |
|
24 |
with open("config.yaml", "r") as file:
|
25 |
params = yaml.safe_load(file)
|
|
|
56 |
).to(device)
|
57 |
|
58 |
# proxy models for explainability
|
59 |
+
mini_bc_model_name = "polygraf-ai/bc-model-bert-mini"
|
60 |
+
bc_tokenizer_mini = AutoTokenizer.from_pretrained(mini_bc_model_name)
|
61 |
+
bc_model_mini = AutoModelForSequenceClassification.from_pretrained(
|
62 |
+
mini_bc_model_name
|
63 |
+
).to(device)
|
64 |
+
mini_humanizer_model_name = "polygraf-ai/quillbot-detector-bert-mini-9K"
|
65 |
+
humanizer_tokenizer_mini = AutoTokenizer.from_pretrained(mini_humanizer_model_name)
|
66 |
+
humanizer_model_mini = AutoModelForSequenceClassification.from_pretrained(
|
67 |
+
mini_humanizer_model_name
|
68 |
+
).to(device)
|
69 |
+
|
70 |
+
# model score calibration
|
71 |
+
iso_reg = joblib.load("isotonic_regression_model.joblib")
|
72 |
|
73 |
|
74 |
def split_text_allow_complete_sentences_nltk(
|
|
|
173 |
if model_type == "quillbot":
|
174 |
cleaning = False
|
175 |
max_length = 256
|
176 |
+
model = humanizer_model_mini
|
177 |
+
tokenizer = humanizer_tokenizer_mini
|
178 |
elif model_type == "bc":
|
179 |
cleaning = True
|
180 |
max_length = 512
|
|
|
276 |
average_bc_scores = np.mean(bc_scores_array, axis=0)
|
277 |
bc_score_list = average_bc_scores.tolist()
|
278 |
bc_score = {"AI": bc_score_list[1], "HUMAN": bc_score_list[0]}
|
279 |
+
# print(f"Original BC scores: AI: {bc_score_list[1]}, HUMAN: {bc_score_list[0]}")
|
280 |
+
# isotonic regression calibration
|
281 |
+
# ai_score = iso_reg.predict([bc_score_list[1]])[0]
|
282 |
+
# human_score = 1 - ai_score
|
283 |
+
# bc_score = {"AI": ai_score, "HUMAN": human_score}
|
284 |
+
# print(f"Calibration BC scores: AI: {ai_score}, HUMAN: {human_score}")
|
285 |
return bc_score
|
286 |
|
287 |
|
requirements.txt
CHANGED
@@ -24,4 +24,5 @@ pymupdf
|
|
24 |
sentence-transformers
|
25 |
Unidecode
|
26 |
python-dotenv
|
27 |
-
lime
|
|
|
|
24 |
sentence-transformers
|
25 |
Unidecode
|
26 |
python-dotenv
|
27 |
+
lime
|
28 |
+
joblib
|