from urllib.request import urlopen, Request from googleapiclient.discovery import build import requests import httpx import re from bs4 import BeautifulSoup import re, math from collections import Counter import numpy as np import asyncio import nltk from sentence_transformers import SentenceTransformer, util import threading nltk.download('punkt') WORD = re.compile(r"\w+") model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2') # returns cosine similarity of two vectors # input: two vectors # output: integer between 0 and 1. def get_cosine(vec1, vec2): intersection = set(vec1.keys()) & set(vec2.keys()) # calculating numerator numerator = sum([vec1[x] * vec2[x] for x in intersection]) # calculating denominator sum1 = sum([vec1[x] ** 2 for x in vec1.keys()]) sum2 = sum([vec2[x] ** 2 for x in vec2.keys()]) denominator = math.sqrt(sum1) * math.sqrt(sum2) # checking for divide by zero if denominator == 0: return 0.0 else: return float(numerator) / denominator # converts given text into a vector def text_to_vector(text): # uses the Regular expression above and gets all words words = WORD.findall(text) # returns a counter of all the words (count of number of occurences) return Counter(words) # returns cosine similarity of two words # uses: text_to_vector(text) and get_cosine(v1,v2) def cosineSim(text1, text2): vector1 = text_to_vector(text1) vector2 = text_to_vector(text2) # print vector1,vector2 cosine = get_cosine(vector1, vector2) return cosine def cos_sim_torch(embedding_1, embedding_2): return util.pytorch_cos_sim(embedding_1, embedding_2).item() def embed_text(text): return model.encode(text, convert_to_tensor=True) def sentence_similarity(text1, text2): embedding_1= model.encode(text1, convert_to_tensor=True) embedding_2 = model.encode(text2, convert_to_tensor=True) o = util.pytorch_cos_sim(embedding_1, embedding_2) return o.item() def get_soup_requests(url): page = requests.get(url) if page.status_code == 200: soup = BeautifulSoup(page.content, "html.parser") return soup print("HTML soup failed") return None def get_soup_httpx(url): client = httpx.Client(timeout=30) try: page = client.get(url) if page.status_code == httpx.codes.OK: soup = BeautifulSoup(page.content, "html.parser") return soup except: print("HTTPx soup failed") return None def getSentences(text): from nltk.tokenize import sent_tokenize sents = sent_tokenize(text) two_sents = [] for i in range(len(sents)): if (i % 2) == 0: two_sents.append(sents[i]) else: two_sents[len(two_sents) - 1] += " " + sents[i] return two_sents def googleSearch( plag_option, sentences, urlCount, scoreArray, urlList, sorted_date, domains_to_skip, api_key, cse_id, **kwargs, ): service = build("customsearch", "v1", developerKey=api_key) for i, sentence in enumerate(sentences): results = ( service.cse() .list(q=sentence, cx=cse_id, sort=sorted_date, **kwargs) .execute() ) if "items" in results and len(results["items"]) > 0: for count, link in enumerate(results["items"]): # stop after 3 pages if count >= 3: break # skip user selected domains if any( ("." + domain) in link["link"] for domain in domains_to_skip ): continue # clean up snippet of '...' snippet = link["snippet"] ind = snippet.find("...") if ind < 20 and ind > 9: snippet = snippet[ind + len("... ") :] ind = snippet.find("...") if ind > len(snippet) - 5: snippet = snippet[:ind] # update cosine similarity between snippet and given text url = link["link"] if url not in urlList: urlList.append(url) scoreArray.append([0] * len(sentences)) urlCount[url] = urlCount[url] + 1 if url in urlCount else 1 if plag_option == 'Standard': scoreArray[urlList.index(url)][i] = cosineSim( sentence, snippet) else : scoreArray[urlList.index(url)][i] = sentence_similarity( sentence, snippet ) else: print("Google Search failed") return urlCount, scoreArray def getQueries(text, n): # return n-grams of size n words = text.split() return [words[i : i + n] for i in range(len(words) - n + 1)] def print2D(array): print(np.array(array)) def removePunc(text): res = re.sub(r"[^\w\s]", "", text) return res async def get_url_data(url, client): try: r = await client.get(url) # print(r.status_code) if r.status_code == 200: # print("in") soup = BeautifulSoup(r.content, "html.parser") return soup except Exception: print("HTTPx parallel soup failed") return None async def parallel_scrap(urls): async with httpx.AsyncClient(timeout=30) as client: tasks = [] for url in urls: tasks.append(get_url_data(url=url, client=client)) results = await asyncio.gather(*tasks, return_exceptions=True) return results class TimeoutError(Exception): pass def matchingScore(sentence, content): if sentence in content: return 1 sentence = removePunc(sentence) content = removePunc(content) if sentence in content: return 1 else: n = 5 ngrams = getQueries(sentence, n) if len(ngrams) == 0: return 0 matched = [x for x in ngrams if " ".join(x) in content] return len(matched) / len(ngrams) def matchingScoreWithTimeout(sentence, content): def timeout_handler(): raise TimeoutError("Function timed out") timer = threading.Timer(10, timeout_handler) # Set a timer for 2 seconds timer.start() try: score = sentence_similarity(sentence, content) # score = matchingScore(sentence, content) timer.cancel() # Cancel the timer if calculation completes before timeout return score except TimeoutError: return 0 # async def matchingScoreAsync(sentences, content, content_idx, ScoreArray): # content = removePunc(content) # for j, sentence in enumerate(sentences): # sentence = removePunc(sentence) # if sentence in content: # ScoreArray[content_idx][j] = 1 # else: # n = 5 # ngrams = getQueries(sentence, n) # if len(ngrams) == 0: # return 0 # matched = [x for x in ngrams if " ".join(x) in content] # ScoreArray[content_idx][j] = len(matched) / len(ngrams) # print( # f"Analyzed {content_idx+1} of soups (SOUP SUCCEEDED)........................" # ) # return ScoreArray async def matchingScoreAsync(sentences, content, content_idx, ScoreArray, model, util): content = removePunc(content) for j, sentence in enumerate(sentences): sentence = removePunc(sentence) similarity_score = sentence_similarity(sentence, content, model, util) ScoreArray[content_idx][j] = similarity_score print(f"Analyzed {content_idx+1} of contents (CONTENT ANALYZED)........................") return ScoreArray async def parallel_analyze(soups, sentences, ScoreArray): tasks = [] for i, soup in enumerate(soups): if soup: page_content = soup.text tasks.append( matchingScoreAsync(sentences, page_content, i, ScoreArray) ) else: print( f"Analyzed {i+1} of soups (SOUP FAILED)........................" ) ScoreArray = await asyncio.gather(*tasks, return_exceptions=True) return ScoreArray async def parallel_analyze_2(soups, sentences, ScoreArray): tasks = [[0] * len(ScoreArray[0]) for i in range(len(ScoreArray))] for i, soup in enumerate(soups): if soup: page_content = soup.text for j, sent in enumerate(sentences): print( f"Analyzing {i+1} of {len(soups)} soups with {j+1} of {len(sentences)} sentences........................" ) tasks[i][j] = sentence_similarity(sent, page_content) else: print( f"Analyzed {i+1} of soups (SOUP FAILED)........................" ) ScoreArray = await asyncio.gather(*tasks, return_exceptions=True) return ScoreArray