import yaml import subprocess import nltk from nltk import word_tokenize from nltk.corpus import cmudict, stopwords import spacy import torch from transformers import GPT2LMHeadModel, GPT2TokenizerFast import matplotlib.pyplot as plt import numpy as np from matplotlib.patches import Circle, RegularPolygon from matplotlib.path import Path from matplotlib.projections import register_projection from matplotlib.projections.polar import PolarAxes from matplotlib.spines import Spine from matplotlib.transforms import Affine2D from writing_analysis import ( estimated_slightly_difficult_words_ratio, entity_density, determiners_frequency, punctuation_diversity, type_token_ratio, calculate_perplexity, calculate_syntactic_tree_depth, hapax_legomena_ratio, mtld, ) nltk.download("cmudict") nltk.download("punkt") nltk.download("stopwords") nltk.download("wordnet") d = cmudict.dict() command = ["python3", "-m", "spacy", "download", "en_core_web_sm"] subprocess.run(command) nlp = spacy.load("en_core_web_sm") with open("config.yaml", "r") as file: params = yaml.safe_load(file) device = "cuda" if torch.cuda.is_available() else "cpu" readability_model_id = params["READABILITY_MODEL_ID"] gpt2_model = GPT2LMHeadModel.from_pretrained(readability_model_id).to(device) gpt2_tokenizer = GPT2TokenizerFast.from_pretrained(readability_model_id) def normalize(value, min_value, max_value): normalized_value = ((value - min_value) * 100) / (max_value - min_value) return max(0, min(100, normalized_value)) def depth_analysis(input_text, bias_buster_selected): if bias_buster_selected: text = update(text) usual_ranges = { "estimated_slightly_difficult_words_ratio": ( 0.2273693623058005, 0.557383692351033, ), "entity_density": (-0.07940776754145815, 0.23491038179986615), "determiners_frequency": (0.012461059190031154, 0.15700934579439252), "punctuation_diversity": (-0.21875, 0.53125), "type_token_ratio": (0.33002482852189063, 1.0894414982357028), "calculate_perplexity": (-25.110544681549072, 82.4620680809021), "calculate_syntactic_tree_depth": ( 1.8380681818181812, 10.997159090909092, ), "hapax_legomena_ratio": (0.0830971690138207, 1.0302715687215778), "mtld": (-84.03125000000001, 248.81875000000002), } vocabulary_level = estimated_slightly_difficult_words_ratio(input_text, d) entity_ratio = entity_density(input_text, nlp) determiner_use = determiners_frequency(input_text, nlp) punctuation_variety = punctuation_diversity(input_text) sentence_depth = calculate_syntactic_tree_depth(input_text, nlp) perplexity = calculate_perplexity( input_text, gpt2_model, gpt2_tokenizer, device ) lexical_diversity = type_token_ratio(input_text) unique_words = hapax_legomena_ratio(input_text) vocabulary_stability = mtld(input_text) # normalize between 0 and 100 vocabulary_level_norm = normalize( vocabulary_level, *usual_ranges["estimated_slightly_difficult_words_ratio"], ) entity_ratio_norm = normalize(entity_ratio, *usual_ranges["entity_density"]) determiner_use_norm = normalize( determiner_use, *usual_ranges["determiners_frequency"] ) punctuation_variety_norm = normalize( punctuation_variety, *usual_ranges["punctuation_diversity"] ) lexical_diversity_norm = normalize( lexical_diversity, *usual_ranges["type_token_ratio"] ) unique_words_norm = normalize( unique_words, *usual_ranges["hapax_legomena_ratio"] ) vocabulary_stability_norm = normalize( vocabulary_stability, *usual_ranges["mtld"] ) sentence_depth_norm = normalize( sentence_depth, *usual_ranges["calculate_syntactic_tree_depth"] ) perplexity_norm = normalize( perplexity, *usual_ranges["calculate_perplexity"] ) features = { "Lexical Diversity": lexical_diversity_norm, "Vocabulary Level": vocabulary_level_norm, "Unique Words": unique_words_norm, "Determiner Use": determiner_use_norm, "Punctuation Variety": punctuation_variety_norm, "Sentence Depth": sentence_depth_norm, "Vocabulary Stability": vocabulary_stability_norm, "Entity Ratio": entity_ratio_norm, "Perplexity": perplexity_norm, } def radar_factory(num_vars, frame="circle"): theta = np.linspace(0, 2 * np.pi, num_vars, endpoint=False) class RadarTransform(PolarAxes.PolarTransform): def transform_path_non_affine(self, path): if path._interpolation_steps > 1: path = path.interpolated(num_vars) return Path(self.transform(path.vertices), path.codes) class RadarAxes(PolarAxes): name = "radar" PolarTransform = RadarTransform def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.set_theta_zero_location("N") def fill(self, *args, closed=True, **kwargs): return super().fill(closed=closed, *args, **kwargs) def plot(self, *args, **kwargs): lines = super().plot(*args, **kwargs) for line in lines: self._close_line(line) def _close_line(self, line): x, y = line.get_data() if x[0] != x[-1]: x = np.append(x, x[0]) y = np.append(y, y[0]) line.set_data(x, y) def set_varlabels(self, labels): self.set_thetagrids(np.degrees(theta), labels) def _gen_axes_patch(self): if frame == "circle": return Circle((0.5, 0.5), 0.5) elif frame == "polygon": return RegularPolygon( (0.5, 0.5), num_vars, radius=0.5, edgecolor="k" ) def _gen_axes_spines(self): if frame == "polygon": spine = Spine( axes=self, spine_type="circle", path=Path.unit_regular_polygon(num_vars), ) spine.set_transform( Affine2D().scale(0.5).translate(0.5, 0.5) + self.transAxes ) return {"polar": spine} register_projection(RadarAxes) return theta N = 9 theta = radar_factory(N, frame="polygon") data = features.values() labels = features.keys() fig, ax = plt.subplots( subplot_kw=dict(projection="radar"), figsize=(7.5, 5) ) ax.plot(theta, data) ax.fill(theta, data, alpha=0.4) ax.set_varlabels(labels) rgrids = np.linspace(0, 100, num=6) ax.set_rgrids( rgrids, labels=[f"{round(r)}%" for r in rgrids], fontsize=8, color="black", ) ax.grid(True, color="black", linestyle="-", linewidth=0.5, alpha=0.5) for dd, (label, value) in enumerate(zip(labels, data)): ax.text( theta[dd] + 0.1, value + 5, f"{value:.0f}", horizontalalignment="left", verticalalignment="bottom", fontsize=8, ) return fig