File size: 7,631 Bytes
d9528c3
 
 
 
 
 
a0fda48
 
 
 
 
 
 
d9528c3
 
 
 
 
a0fda48
d9528c3
 
 
 
a0fda48
d9528c3
 
 
 
a0fda48
d9528c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5c8a93
d9528c3
 
 
a0fda48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d9528c3
 
 
 
 
 
 
 
 
a0fda48
 
 
 
 
 
 
 
d9528c3
 
a0fda48
 
 
 
 
 
 
 
 
d9528c3
 
 
 
 
 
a0fda48
d9528c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a0fda48
d9528c3
 
 
 
 
 
 
a0fda48
 
d9528c3
 
 
 
 
 
 
 
 
 
 
 
 
a0fda48
 
 
 
 
 
 
 
 
 
d9528c3
a0fda48
d9528c3
 
a0fda48
d9528c3
 
 
 
 
a0fda48
d9528c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a0fda48
 
 
 
d9528c3
 
 
 
a0fda48
 
a5c8a93
 
d9528c3
 
 
 
 
a5c8a93
d9528c3
 
 
 
 
 
 
 
 
 
 
a0fda48
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import spaces
import json
import subprocess
import gradio as gr
from huggingface_hub import hf_hub_download

from duckduckgo_search import DDGS

from trafilatura import fetch_url, extract

subprocess.run(
    'pip install llama-cpp-python==0.2.75 --extra-index-url https://abetlen.github.io/llama-cpp-python/whl/cu124',
    shell=True)
subprocess.run('pip install llama-cpp-agent==0.2.10', shell=True)

hf_hub_download(
    repo_id="bartowski/Meta-Llama-3-70B-Instruct-GGUF",
    filename="Meta-Llama-3-70B-Instruct-Q3_K_M.gguf",
    local_dir="./models"
)
hf_hub_download(
    repo_id="bartowski/Llama-3-8B-Synthia-v3.5-GGUF",
    filename="Llama-3-8B-Synthia-v3.5-f16.gguf",
    local_dir="./models"
)
hf_hub_download(
    repo_id="bartowski/Mistral-7B-Instruct-v0.3-GGUF",
    filename="Mistral-7B-Instruct-v0.3-f32.gguf",
    local_dir="./models"
)

css = """
.message-row {
    justify-content: space-evenly !important;
}
.message-bubble-border {
    border-radius: 6px !important;
}
.dark.message-bubble-border {
    border-color: #343140 !important;
}
.dark.user {
    background: #1e1c26 !important;
}
.dark.assistant.dark, .dark.pending.dark {
    background: #111111 !important;
}
"""


def get_website_content_from_url(url: str) -> str:
    """
    Get website content from a URL using Selenium and BeautifulSoup for improved content extraction and filtering.

    Args:
        url (str): URL to get website content from.

    Returns:
        str: Extracted content including title, main text, and tables.
    """

    try:
        downloaded = fetch_url(url)

        result = extract(downloaded, include_formatting=True, include_links=True, output_format='json', url=url)

        if result:
            result = json.loads(result)
            return f'=========== Website Title: {result["title"]} ===========\n\n=========== Website URL: {url} ===========\n\n=========== Website Content ===========\n\n{result["raw_text"]}\n\n=========== Website Content End ===========\n\n'
        else:
            return ""
    except Exception as e:
        return f"An error occurred: {str(e)}"


def search_web(search_query: str):
    """
    Search the web for information.
    Args:
        search_query (str): Search query to search for.
    """
    results = DDGS().text(search_query, region='wt-wt', safesearch='off', timelimit='y', max_results=3)
    result_string = ''
    for res in results:
        web_info = get_website_content_from_url(res['href'])
        if web_info != "":
            result_string += web_info

    res = result_string.strip()
    return "Based on the following results, answer the previous user query:\nResults:\n\n" + res


def get_messages_formatter_type(model_name):
    from llama_cpp_agent import MessagesFormatterType
    if "Llama" in model_name:
        return MessagesFormatterType.LLAMA_3
    elif "Mistral" in model_name:
        return MessagesFormatterType.MISTRAL
    else:
        raise ValueError(f"Unsupported model: {model_name}")


def write_message_to_user():
    """
    Let you write a message to the user.
    """
    return "Please write the message to the user."


@spaces.GPU(duration=120)
def respond(
        message,
        history: list[tuple[str, str]],
        system_message,
        max_tokens,
        temperature,
        top_p,
        top_k,
        repeat_penalty,
        model,
):
    from llama_cpp import Llama
    from llama_cpp_agent import LlamaCppAgent
    from llama_cpp_agent.providers import LlamaCppPythonProvider
    from llama_cpp_agent.chat_history import BasicChatHistory
    from llama_cpp_agent.chat_history.messages import Roles
    from llama_cpp_agent.llm_output_settings import LlmStructuredOutputSettings
    chat_template = get_messages_formatter_type(model)

    llm = Llama(
        model_path=f"models/{model}",
        flash_attn=True,
        n_threads=40,
        n_gpu_layers=81,
        n_batch=1024,
        n_ctx=8192,
    )
    provider = LlamaCppPythonProvider(llm)

    agent = LlamaCppAgent(
        provider,
        system_prompt=f"{system_message}",
        predefined_messages_formatter_type=chat_template,
        debug_output=True
    )

    settings = provider.get_provider_default_settings()
    settings.temperature = temperature
    settings.top_k = top_k
    settings.top_p = top_p
    settings.max_tokens = max_tokens
    settings.repeat_penalty = repeat_penalty
    settings.stream = True
    output_settings = LlmStructuredOutputSettings.from_functions(
        [search_web, write_message_to_user])
    messages = BasicChatHistory()

    for msn in history:
        user = {
            'role': Roles.user,
            'content': msn[0]
        }
        assistant = {
            'role': Roles.assistant,
            'content': msn[1]
        }
        messages.add_message(user)
        messages.add_message(assistant)
    result = agent.get_chat_response(message, llm_sampling_settings=settings, structured_output_settings=output_settings,
                                     chat_history=messages,
                                     print_output=False)
    while True:
        if result[0]["function"] == "write_message_to_user":
            break
        else:
            result = agent.get_chat_response(result[0]["return_value"], role=Roles.tool, chat_history=messages,structured_output_settings=output_settings,
                                             print_output=False)

    stream = agent.get_chat_response(
        result[0]["return_value"], role=Roles.tool, llm_sampling_settings=settings, chat_history=messages, returns_streaming_generator=True,
        print_output=False
    )

    outputs = ""
    for output in stream:
        outputs += output
        yield outputs


demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Textbox(value="You are a helpful assistant.", label="System message"),
        gr.Slider(minimum=1, maximum=4096, value=2048, step=1, label="Max tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p",
        ),
        gr.Slider(
            minimum=0,
            maximum=100,
            value=40,
            step=1,
            label="Top-k",
        ),
        gr.Slider(
            minimum=0.0,
            maximum=2.0,
            value=1.1,
            step=0.1,
            label="Repetition penalty",
        ),
        gr.Dropdown([
            'Meta-Llama-3-70B-Instruct-Q3_K_M.gguf',
            'Llama-3-8B-Synthia-v3.5-f16.gguf',
            'Mistral-7B-Instruct-v0.3-f32.gguf'
        ],
            value="Meta-Llama-3-70B-Instruct-Q3_K_M.gguf",
            label="Model"
        ),
    ],
    theme=gr.themes.Soft(primary_hue="violet", secondary_hue="violet", neutral_hue="gray",
                         font=[gr.themes.GoogleFont("Exo"), "ui-sans-serif", "system-ui", "sans-serif"]).set(
        body_background_fill_dark="#111111",
        block_background_fill_dark="#111111",
        block_border_width="1px",
        block_title_background_fill_dark="#1e1c26",
        input_background_fill_dark="#292733",
        button_secondary_background_fill_dark="#24212b",
        border_color_primary_dark="#343140",
        background_fill_secondary_dark="#111111",
        color_accent_soft_dark="transparent"
    ),
    css=css,
    retry_btn="Retry",
    undo_btn="Undo",
    clear_btn="Clear",
    submit_btn="Send",
    description="Llama-cpp-agent: Chat multi llm selection"
)

if __name__ == "__main__":
    demo.launch()