File size: 3,203 Bytes
ada39d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import gradio as gr
import random
import torch
from transformers import MT5Tokenizer, MT5ForConditionalGeneration
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

tokenizer = MT5Tokenizer.from_pretrained("potsawee/mt5-english-thai-large-translation")
translator = MT5ForConditionalGeneration.from_pretrained("potsawee/mt5-english-thai-large-translation")
summarizer = MT5ForConditionalGeneration.from_pretrained("potsawee/mt5-english-thai-large-summarization")
translator.eval()
summarizer.eval()
translator.to(device)
summarizer.to(device)


# def generate_multiple_choice_question(
#     context
# ):
#     num_questions = 1
#     question_item = question_generation_sampling(
#         g1_model, g1_tokenizer,
#         g2_model, g2_tokenizer,
#         context, num_questions, device
#     )[0]
#     question = question_item['question']
#     options = question_item['options']
#     options[0] = f"{options[0]} [ANSWER]"
#     random.shuffle(options)
#     output_string = f"Question: {question}\n[A] {options[0]}\n[B] {options[1]}\n[C] {options[2]}\n[D] {options[3]}"
#     return output_string
#
# demo = gr.Interface(
#     fn=generate_multiple_choice_question,
#     inputs=gr.Textbox(lines=8, placeholder="Context Here..."),
#     outputs=gr.Textbox(lines=5, placeholder="Question: \n[A] \n[B] \n[C] \n[D] "),
#     title="Multiple-choice Question Generator",
#     description="Provide some context (e.g. news article or any passage) in the context box and click **Submit**. The models currently support English only. This demo is a part of MQAG - https://github.com/potsawee/mqag0.",
#     allow_flagging='never'
# )

def generate_output(
    task,
    text,
):
    inputs = tokenizer(
        [text],
        padding="longest",
        max_length=1024,
        truncation=True,
        return_tensors="pt",
    ).to(device)
    if task == 'Translation':
        outputs = translator.generate(
            **inputs,
            max_new_tokens=256,
        )
    elif task == 'Summarization':
        outputs = summarizer.generate(
            **inputs,
            max_new_tokens=256,
        )
    else:
        raise ValueError("task undefined!")
    gen_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
    return gen_text

TASKS = ["Translation", "Summarization"]

demo = gr.Interface(
    fn=generate_output,
    inputs=[
        gr.components.Radio(label="Task", choices=TASKS, value="Translation"),
        gr.components.Textbox(label="Text (in English)", lines=10),
    ],
    outputs=gr.Textbox(label="Text (in Thai)", lines=4),
    # examples=[["Building a translation demo with Gradio is so easy!", "eng_Latn", "spa_Latn"]],
    cache_examples=False,
    title="English🇬🇧 to Thai🇹🇭 | Translation or Summarization",
    description="Provide some text (in English) & select one of the tasks (Translation or Summarization). Note that currently the model only supports text up to 1024 tokens. The base architecture is mt5-large with the embeddings filtered to only English and Thai tokens and fine-tuned to XSum (Eng2Thai) Dataset (https://huggingface.co/datasets/potsawee/xsum_eng2thai).",
    allow_flagging='never'

)

demo.launch()