File size: 8,239 Bytes
9063b08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
'''
This is the main function of the PE classification of this program
The library used to extract the features from the PE was pefile and you can find it here,
https://pypi.org/project/pefile/

In this program we are first extracting the features from the PE and then providing it to the saved machine and using thoses features we are prediciting whether the PE is malicious or not.
'''

import pefile
import os
import array
import math
import pickle
import joblib
import sys
import argparse


#For calculating the entropy
def get_entropy(data):
    if len(data) == 0:
        return 0.0
    occurences = array.array('L', [0]*256)
    for x in data:
        occurences[x if isinstance(x, int) else ord(x)] += 1

    entropy = 0
    for x in occurences:
        if x:
            p_x = float(x) / len(data)
            entropy -= p_x*math.log(p_x, 2)

    return entropy

#For extracting the resources part
def get_resources(pe):
    """Extract resources :
    [entropy, size]"""
    resources = []
    if hasattr(pe, 'DIRECTORY_ENTRY_RESOURCE'):
        try:
            for resource_type in pe.DIRECTORY_ENTRY_RESOURCE.entries:
                if hasattr(resource_type, 'directory'):
                    for resource_id in resource_type.directory.entries:
                        if hasattr(resource_id, 'directory'):
                            for resource_lang in resource_id.directory.entries:
                                data = pe.get_data(resource_lang.data.struct.OffsetToData, resource_lang.data.struct.Size)
                                size = resource_lang.data.struct.Size
                                entropy = get_entropy(data)

                                resources.append([entropy, size])
        except Exception as e:
            return resources
    return resources

#For getting the version information
def get_version_info(pe):
    """Return version infos"""
    res = {}
    for fileinfo in pe.FileInfo:
        if fileinfo.Key == 'StringFileInfo':
            for st in fileinfo.StringTable:
                for entry in st.entries.items():
                    res[entry[0]] = entry[1]
        if fileinfo.Key == 'VarFileInfo':
            for var in fileinfo.Var:
                res[var.entry.items()[0][0]] = var.entry.items()[0][1]
    if hasattr(pe, 'VS_FIXEDFILEINFO'):
          res['flags'] = pe.VS_FIXEDFILEINFO.FileFlags
          res['os'] = pe.VS_FIXEDFILEINFO.FileOS
          res['type'] = pe.VS_FIXEDFILEINFO.FileType
          res['file_version'] = pe.VS_FIXEDFILEINFO.FileVersionLS
          res['product_version'] = pe.VS_FIXEDFILEINFO.ProductVersionLS
          res['signature'] = pe.VS_FIXEDFILEINFO.Signature
          res['struct_version'] = pe.VS_FIXEDFILEINFO.StrucVersion
    return res

#extract the info for a given file using pefile
def extract_infos(fpath):
    res = {}
    pe = pefile.PE(fpath)
    res['Machine'] = pe.FILE_HEADER.Machine
    res['SizeOfOptionalHeader'] = pe.FILE_HEADER.SizeOfOptionalHeader
    res['Characteristics'] = pe.FILE_HEADER.Characteristics
    res['MajorLinkerVersion'] = pe.OPTIONAL_HEADER.MajorLinkerVersion
    res['MinorLinkerVersion'] = pe.OPTIONAL_HEADER.MinorLinkerVersion
    res['SizeOfCode'] = pe.OPTIONAL_HEADER.SizeOfCode
    res['SizeOfInitializedData'] = pe.OPTIONAL_HEADER.SizeOfInitializedData
    res['SizeOfUninitializedData'] = pe.OPTIONAL_HEADER.SizeOfUninitializedData
    res['AddressOfEntryPoint'] = pe.OPTIONAL_HEADER.AddressOfEntryPoint
    res['BaseOfCode'] = pe.OPTIONAL_HEADER.BaseOfCode
    try:
        res['BaseOfData'] = pe.OPTIONAL_HEADER.BaseOfData
    except AttributeError:
        res['BaseOfData'] = 0
    res['ImageBase'] = pe.OPTIONAL_HEADER.ImageBase
    res['SectionAlignment'] = pe.OPTIONAL_HEADER.SectionAlignment
    res['FileAlignment'] = pe.OPTIONAL_HEADER.FileAlignment
    res['MajorOperatingSystemVersion'] = pe.OPTIONAL_HEADER.MajorOperatingSystemVersion
    res['MinorOperatingSystemVersion'] = pe.OPTIONAL_HEADER.MinorOperatingSystemVersion
    res['MajorImageVersion'] = pe.OPTIONAL_HEADER.MajorImageVersion
    res['MinorImageVersion'] = pe.OPTIONAL_HEADER.MinorImageVersion
    res['MajorSubsystemVersion'] = pe.OPTIONAL_HEADER.MajorSubsystemVersion
    res['MinorSubsystemVersion'] = pe.OPTIONAL_HEADER.MinorSubsystemVersion
    res['SizeOfImage'] = pe.OPTIONAL_HEADER.SizeOfImage
    res['SizeOfHeaders'] = pe.OPTIONAL_HEADER.SizeOfHeaders
    res['CheckSum'] = pe.OPTIONAL_HEADER.CheckSum
    res['Subsystem'] = pe.OPTIONAL_HEADER.Subsystem
    res['DllCharacteristics'] = pe.OPTIONAL_HEADER.DllCharacteristics
    res['SizeOfStackReserve'] = pe.OPTIONAL_HEADER.SizeOfStackReserve
    res['SizeOfStackCommit'] = pe.OPTIONAL_HEADER.SizeOfStackCommit
    res['SizeOfHeapReserve'] = pe.OPTIONAL_HEADER.SizeOfHeapReserve
    res['SizeOfHeapCommit'] = pe.OPTIONAL_HEADER.SizeOfHeapCommit
    res['LoaderFlags'] = pe.OPTIONAL_HEADER.LoaderFlags
    res['NumberOfRvaAndSizes'] = pe.OPTIONAL_HEADER.NumberOfRvaAndSizes

    # Sections
    res['SectionsNb'] = len(pe.sections)
    entropy = list(map(lambda x:x.get_entropy(), pe.sections))
    res['SectionsMeanEntropy'] = sum(entropy)/float(len((entropy)))
    res['SectionsMinEntropy'] = min(entropy)
    res['SectionsMaxEntropy'] = max(entropy)
    raw_sizes = list(map(lambda x:x.SizeOfRawData, pe.sections))
    res['SectionsMeanRawsize'] = sum(raw_sizes)/float(len((raw_sizes)))
    res['SectionsMinRawsize'] = min(raw_sizes)
    #res['SectionsMaxRawsize'] = max(raw_sizes)
    virtual_sizes = list(map(lambda x:x.Misc_VirtualSize, pe.sections))
    res['SectionsMeanVirtualsize'] = sum(virtual_sizes)/float(len(virtual_sizes))
    res['SectionsMinVirtualsize'] = min(virtual_sizes)
    res['SectionMaxVirtualsize'] = max(virtual_sizes)

    #Imports
    try:
        res['ImportsNbDLL'] = len(pe.DIRECTORY_ENTRY_IMPORT)
        imports = sum([x.imports for x in pe.DIRECTORY_ENTRY_IMPORT], [])
        res['ImportsNb'] = len(imports)
        res['ImportsNbOrdinal'] = 0
    except AttributeError:
        res['ImportsNbDLL'] = 0
        res['ImportsNb'] = 0
        res['ImportsNbOrdinal'] = 0

    #Exports
    try:
        res['ExportNb'] = len(pe.DIRECTORY_ENTRY_EXPORT.symbols)
    except AttributeError:
        # No export
        res['ExportNb'] = 0
    #Resources
    resources= get_resources(pe)
    res['ResourcesNb'] = len(resources)
    if len(resources)> 0:
        entropy = list(map(lambda x:x[0], resources))
        res['ResourcesMeanEntropy'] = sum(entropy)/float(len(entropy))
        res['ResourcesMinEntropy'] = min(entropy)
        res['ResourcesMaxEntropy'] = max(entropy)
        sizes = list(map(lambda x:x[1], resources))
        res['ResourcesMeanSize'] = sum(sizes)/float(len(sizes))
        res['ResourcesMinSize'] = min(sizes)
        res['ResourcesMaxSize'] = max(sizes)
    else:
        res['ResourcesNb'] = 0
        res['ResourcesMeanEntropy'] = 0
        res['ResourcesMinEntropy'] = 0
        res['ResourcesMaxEntropy'] = 0
        res['ResourcesMeanSize'] = 0
        res['ResourcesMinSize'] = 0
        res['ResourcesMaxSize'] = 0

    # Load configuration size
    try:
        res['LoadConfigurationSize'] = pe.DIRECTORY_ENTRY_LOAD_CONFIG.struct.Size
    except AttributeError:
        res['LoadConfigurationSize'] = 0


    # Version configuration size
    try:
        version_infos = get_version_info(pe)
        res['VersionInformationSize'] = len(version_infos.keys())
    except AttributeError:
        res['VersionInformationSize'] = 0
    return res


if __name__ == '__main__':
    
    #Loading the classifier.pkl and features.pkl
    clf = joblib.load('Classifier/classifier.pkl')
    features = pickle.loads(open(os.path.join('Classifier/features.pkl'),'rb').read())
    
    #extracting features from the PE file mentioned in the argument 
    data = extract_infos(sys.argv[1])
    
    #matching it with the features saved in features.pkl
    pe_features = list(map(lambda x:data[x], features))
    print("Features used for classification: ", pe_features)
    
    #prediciting if the PE is malicious or not based on the extracted features
    res= clf.predict([pe_features])[0]
    print ('The file %s is %s' % (os.path.basename(sys.argv[1]),['malicious', 'legitimate'][res]))