Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 8,239 Bytes
9063b08 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
'''
This is the main function of the PE classification of this program
The library used to extract the features from the PE was pefile and you can find it here,
https://pypi.org/project/pefile/
In this program we are first extracting the features from the PE and then providing it to the saved machine and using thoses features we are prediciting whether the PE is malicious or not.
'''
import pefile
import os
import array
import math
import pickle
import joblib
import sys
import argparse
#For calculating the entropy
def get_entropy(data):
if len(data) == 0:
return 0.0
occurences = array.array('L', [0]*256)
for x in data:
occurences[x if isinstance(x, int) else ord(x)] += 1
entropy = 0
for x in occurences:
if x:
p_x = float(x) / len(data)
entropy -= p_x*math.log(p_x, 2)
return entropy
#For extracting the resources part
def get_resources(pe):
"""Extract resources :
[entropy, size]"""
resources = []
if hasattr(pe, 'DIRECTORY_ENTRY_RESOURCE'):
try:
for resource_type in pe.DIRECTORY_ENTRY_RESOURCE.entries:
if hasattr(resource_type, 'directory'):
for resource_id in resource_type.directory.entries:
if hasattr(resource_id, 'directory'):
for resource_lang in resource_id.directory.entries:
data = pe.get_data(resource_lang.data.struct.OffsetToData, resource_lang.data.struct.Size)
size = resource_lang.data.struct.Size
entropy = get_entropy(data)
resources.append([entropy, size])
except Exception as e:
return resources
return resources
#For getting the version information
def get_version_info(pe):
"""Return version infos"""
res = {}
for fileinfo in pe.FileInfo:
if fileinfo.Key == 'StringFileInfo':
for st in fileinfo.StringTable:
for entry in st.entries.items():
res[entry[0]] = entry[1]
if fileinfo.Key == 'VarFileInfo':
for var in fileinfo.Var:
res[var.entry.items()[0][0]] = var.entry.items()[0][1]
if hasattr(pe, 'VS_FIXEDFILEINFO'):
res['flags'] = pe.VS_FIXEDFILEINFO.FileFlags
res['os'] = pe.VS_FIXEDFILEINFO.FileOS
res['type'] = pe.VS_FIXEDFILEINFO.FileType
res['file_version'] = pe.VS_FIXEDFILEINFO.FileVersionLS
res['product_version'] = pe.VS_FIXEDFILEINFO.ProductVersionLS
res['signature'] = pe.VS_FIXEDFILEINFO.Signature
res['struct_version'] = pe.VS_FIXEDFILEINFO.StrucVersion
return res
#extract the info for a given file using pefile
def extract_infos(fpath):
res = {}
pe = pefile.PE(fpath)
res['Machine'] = pe.FILE_HEADER.Machine
res['SizeOfOptionalHeader'] = pe.FILE_HEADER.SizeOfOptionalHeader
res['Characteristics'] = pe.FILE_HEADER.Characteristics
res['MajorLinkerVersion'] = pe.OPTIONAL_HEADER.MajorLinkerVersion
res['MinorLinkerVersion'] = pe.OPTIONAL_HEADER.MinorLinkerVersion
res['SizeOfCode'] = pe.OPTIONAL_HEADER.SizeOfCode
res['SizeOfInitializedData'] = pe.OPTIONAL_HEADER.SizeOfInitializedData
res['SizeOfUninitializedData'] = pe.OPTIONAL_HEADER.SizeOfUninitializedData
res['AddressOfEntryPoint'] = pe.OPTIONAL_HEADER.AddressOfEntryPoint
res['BaseOfCode'] = pe.OPTIONAL_HEADER.BaseOfCode
try:
res['BaseOfData'] = pe.OPTIONAL_HEADER.BaseOfData
except AttributeError:
res['BaseOfData'] = 0
res['ImageBase'] = pe.OPTIONAL_HEADER.ImageBase
res['SectionAlignment'] = pe.OPTIONAL_HEADER.SectionAlignment
res['FileAlignment'] = pe.OPTIONAL_HEADER.FileAlignment
res['MajorOperatingSystemVersion'] = pe.OPTIONAL_HEADER.MajorOperatingSystemVersion
res['MinorOperatingSystemVersion'] = pe.OPTIONAL_HEADER.MinorOperatingSystemVersion
res['MajorImageVersion'] = pe.OPTIONAL_HEADER.MajorImageVersion
res['MinorImageVersion'] = pe.OPTIONAL_HEADER.MinorImageVersion
res['MajorSubsystemVersion'] = pe.OPTIONAL_HEADER.MajorSubsystemVersion
res['MinorSubsystemVersion'] = pe.OPTIONAL_HEADER.MinorSubsystemVersion
res['SizeOfImage'] = pe.OPTIONAL_HEADER.SizeOfImage
res['SizeOfHeaders'] = pe.OPTIONAL_HEADER.SizeOfHeaders
res['CheckSum'] = pe.OPTIONAL_HEADER.CheckSum
res['Subsystem'] = pe.OPTIONAL_HEADER.Subsystem
res['DllCharacteristics'] = pe.OPTIONAL_HEADER.DllCharacteristics
res['SizeOfStackReserve'] = pe.OPTIONAL_HEADER.SizeOfStackReserve
res['SizeOfStackCommit'] = pe.OPTIONAL_HEADER.SizeOfStackCommit
res['SizeOfHeapReserve'] = pe.OPTIONAL_HEADER.SizeOfHeapReserve
res['SizeOfHeapCommit'] = pe.OPTIONAL_HEADER.SizeOfHeapCommit
res['LoaderFlags'] = pe.OPTIONAL_HEADER.LoaderFlags
res['NumberOfRvaAndSizes'] = pe.OPTIONAL_HEADER.NumberOfRvaAndSizes
# Sections
res['SectionsNb'] = len(pe.sections)
entropy = list(map(lambda x:x.get_entropy(), pe.sections))
res['SectionsMeanEntropy'] = sum(entropy)/float(len((entropy)))
res['SectionsMinEntropy'] = min(entropy)
res['SectionsMaxEntropy'] = max(entropy)
raw_sizes = list(map(lambda x:x.SizeOfRawData, pe.sections))
res['SectionsMeanRawsize'] = sum(raw_sizes)/float(len((raw_sizes)))
res['SectionsMinRawsize'] = min(raw_sizes)
#res['SectionsMaxRawsize'] = max(raw_sizes)
virtual_sizes = list(map(lambda x:x.Misc_VirtualSize, pe.sections))
res['SectionsMeanVirtualsize'] = sum(virtual_sizes)/float(len(virtual_sizes))
res['SectionsMinVirtualsize'] = min(virtual_sizes)
res['SectionMaxVirtualsize'] = max(virtual_sizes)
#Imports
try:
res['ImportsNbDLL'] = len(pe.DIRECTORY_ENTRY_IMPORT)
imports = sum([x.imports for x in pe.DIRECTORY_ENTRY_IMPORT], [])
res['ImportsNb'] = len(imports)
res['ImportsNbOrdinal'] = 0
except AttributeError:
res['ImportsNbDLL'] = 0
res['ImportsNb'] = 0
res['ImportsNbOrdinal'] = 0
#Exports
try:
res['ExportNb'] = len(pe.DIRECTORY_ENTRY_EXPORT.symbols)
except AttributeError:
# No export
res['ExportNb'] = 0
#Resources
resources= get_resources(pe)
res['ResourcesNb'] = len(resources)
if len(resources)> 0:
entropy = list(map(lambda x:x[0], resources))
res['ResourcesMeanEntropy'] = sum(entropy)/float(len(entropy))
res['ResourcesMinEntropy'] = min(entropy)
res['ResourcesMaxEntropy'] = max(entropy)
sizes = list(map(lambda x:x[1], resources))
res['ResourcesMeanSize'] = sum(sizes)/float(len(sizes))
res['ResourcesMinSize'] = min(sizes)
res['ResourcesMaxSize'] = max(sizes)
else:
res['ResourcesNb'] = 0
res['ResourcesMeanEntropy'] = 0
res['ResourcesMinEntropy'] = 0
res['ResourcesMaxEntropy'] = 0
res['ResourcesMeanSize'] = 0
res['ResourcesMinSize'] = 0
res['ResourcesMaxSize'] = 0
# Load configuration size
try:
res['LoadConfigurationSize'] = pe.DIRECTORY_ENTRY_LOAD_CONFIG.struct.Size
except AttributeError:
res['LoadConfigurationSize'] = 0
# Version configuration size
try:
version_infos = get_version_info(pe)
res['VersionInformationSize'] = len(version_infos.keys())
except AttributeError:
res['VersionInformationSize'] = 0
return res
if __name__ == '__main__':
#Loading the classifier.pkl and features.pkl
clf = joblib.load('Classifier/classifier.pkl')
features = pickle.loads(open(os.path.join('Classifier/features.pkl'),'rb').read())
#extracting features from the PE file mentioned in the argument
data = extract_infos(sys.argv[1])
#matching it with the features saved in features.pkl
pe_features = list(map(lambda x:data[x], features))
print("Features used for classification: ", pe_features)
#prediciting if the PE is malicious or not based on the extracted features
res= clf.predict([pe_features])[0]
print ('The file %s is %s' % (os.path.basename(sys.argv[1]),['malicious', 'legitimate'][res]))
|