AeternumS commited on
Commit
097c2b7
·
1 Parent(s): 32965bb
Files changed (2) hide show
  1. app.py +0 -22
  2. client.py +0 -31
app.py CHANGED
@@ -8,28 +8,6 @@ from sklearn.tree import DecisionTreeClassifier #using sklearn
8
  # Load the saved model
9
  dt = joblib.load('heart_disease_dt_model.pkl')
10
 
11
- # Load the dataset and select the relevant features
12
- data = pd.read_csv('data/heart.xls')
13
-
14
- # Perform the correlation analysis
15
- data_corr = data.corr()
16
-
17
- # Select features based on correlation with 'output'
18
- feature_value = np.array(data_corr['output'])
19
- for i in range(len(feature_value)):
20
- if feature_value[i] < 0:
21
- feature_value[i] = -feature_value[i]
22
-
23
- features_corr = pd.DataFrame(feature_value, index=data_corr['output'].index, columns=['correlation'])
24
- feature_sorted = features_corr.sort_values(by=['correlation'], ascending=False)
25
- feature_selected = feature_sorted.index
26
-
27
- # Clean the data by selecting the most correlated features
28
- clean_data = data[feature_selected]
29
-
30
- # Extract the first row of feature data for prediction (excluding 'output' column)
31
- sample_data = clean_data.iloc[0, 1:].values.reshape(1, -1) # Reshape to 2D array for model input
32
-
33
  #fhe_circuit =
34
  # Make prediction on the first row of data
35
  #prediction = dt.predict(sample_data, fhe="execute")
 
8
  # Load the saved model
9
  dt = joblib.load('heart_disease_dt_model.pkl')
10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
  #fhe_circuit =
12
  # Make prediction on the first row of data
13
  #prediction = dt.predict(sample_data, fhe="execute")
client.py DELETED
@@ -1,31 +0,0 @@
1
- from concrete.ml.deployment import FHEModelDev, FHEModelClient, FHEModelServer
2
-
3
- # Setup the client
4
- client = FHEModelClient(path_dir=fhe_directory, key_dir="/tmp/keys_client")
5
- serialized_evaluation_keys = client.get_serialized_evaluation_keys()
6
-
7
-
8
- # Load the dataset and select the relevant features
9
- data = pd.read_csv('data/heart.xls')
10
-
11
- # Perform the correlation analysis
12
- data_corr = data.corr()
13
-
14
- # Select features based on correlation with 'output'
15
- feature_value = np.array(data_corr['output'])
16
- for i in range(len(feature_value)):
17
- if feature_value[i] < 0:
18
- feature_value[i] = -feature_value[i]
19
-
20
- features_corr = pd.DataFrame(feature_value, index=data_corr['output'].index, columns=['correlation'])
21
- feature_sorted = features_corr.sort_values(by=['correlation'], ascending=False)
22
- feature_selected = feature_sorted.index
23
-
24
- # Clean the data by selecting the most correlated features
25
- clean_data = data[feature_selected]
26
-
27
- # Extract the first row of feature data for prediction (excluding 'output' column)
28
- sample_data = clean_data.iloc[0, 1:].values.reshape(1, -1) # Reshape to 2D array for model input
29
-
30
- encrypted_data = client.quantize_encrypt_serialize(sample_data)
31
-