Spaces:
Sleeping
Sleeping
File size: 5,766 Bytes
646bd9e df6182e 646bd9e df6182e 646bd9e 2b591f4 646bd9e 2b591f4 646bd9e df6182e 628fe8f df6182e 628fe8f df6182e 646bd9e df6182e 646bd9e df6182e 646bd9e df6182e 646bd9e df6182e 646bd9e df6182e 646bd9e 2b591f4 646bd9e 8bad0f5 646bd9e 628fe8f 646bd9e 8bad0f5 646bd9e df6182e 646bd9e 2b591f4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
"""A Gradio app for anonymizing text data using FHE."""
import gradio as gr
from fhe_anonymizer import FHEAnonymizer
import pandas as pd
from openai import OpenAI
import os
import json
import re
anonymizer = FHEAnonymizer()
client = OpenAI(
api_key=os.environ.get("openaikey"),
)
def deidentify_text(input_text):
anonymized_text, identified_words_with_prob = anonymizer(input_text)
# Convert the list of identified words and probabilities into a DataFrame
if identified_words_with_prob:
identified_df = pd.DataFrame(
identified_words_with_prob, columns=["Identified Words", "Probability"]
)
else:
identified_df = pd.DataFrame(columns=["Identified Words", "Probability"])
return anonymized_text, identified_df
def query_chatgpt(anonymized_query):
with open("files/anonymized_document.txt", "r") as file:
anonymized_document = file.read()
with open("files/chatgpt_prompt.txt", "r") as file:
prompt = file.read()
# Prepare prompt
full_prompt = (
prompt + "\n"
)
query = "Document content:\n```\n" + anonymized_document + "\n\n```" + "Query:\n```\n" + anonymized_query + "\n```"
print(full_prompt)
completion = client.chat.completions.create(
model="gpt-4-1106-preview", # Replace with "gpt-4" if available
messages=[
{"role": "system", "content": prompt},
{"role": "user", "content": query},
],
)
anonymized_response = completion.choices[0].message.content
with open("original_document_uuid_mapping.json", "r") as file:
uuid_map = json.load(file)
inverse_uuid_map = {v: k for k, v in uuid_map.items()} # TODO load the inverse mapping from disk for efficiency
# Pattern to identify words and non-words (including punctuation, spaces, etc.)
token_pattern = r"(\b[\w\.\/\-@]+\b|[\s,.!?;:'\"-]+)"
tokens = re.findall(token_pattern, anonymized_response)
processed_tokens = []
for token in tokens:
# Directly append non-word tokens or whitespace to processed_tokens
if not token.strip() or not re.match(r"\w+", token):
processed_tokens.append(token)
continue
if token in inverse_uuid_map:
processed_tokens.append(inverse_uuid_map[token])
else:
processed_tokens.append(token)
deanonymized_response = "".join(processed_tokens)
return anonymized_response, deanonymized_response
# Default demo text from the file
with open("demo_text.txt", "r") as file:
default_demo_text = file.read()
with open("files/original_document.txt", "r") as file:
original_document = file.read()
with open("files/anonymized_document.txt", "r") as file:
anonymized_document = file.read()
demo = gr.Blocks()
with demo:
gr.Markdown(
"""
<p align="center">
<img width=200 src="file/images/logos/zama.jpg">
</p>
<h1 style="text-align: center;">Encrypted Anonymization Using Fully Homomorphic Encryption</h1>
<p align="center">
<a href="https://github.com/zama-ai/concrete-ml"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="file/images/logos/github.png">Concrete-ML</a>
—
<a href="https://docs.zama.ai/concrete-ml"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="file/images/logos/documentation.png">Documentation</a>
—
<a href="https://zama.ai/community"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="file/images/logos/community.png">Community</a>
—
<a href="https://twitter.com/zama_fhe"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="file/images/logos/x.png">@zama_fhe</a>
</p>
"""
)
with gr.Accordion("What is Encrypted Anonymization?", open=False):
gr.Markdown(
"""
Encrypted Anonymization leverages Fully Homomorphic Encryption (FHE) to protect sensitive information during data processing. This approach allows for the anonymization of text data, such as personal identifiers, while ensuring that the data remains encrypted throughout the entire process.
"""
)
with gr.Accordion("Original Document", open=False):
gr.Markdown(original_document)
with gr.Accordion("Anonymized Document", open=False):
gr.Markdown(anonymized_document)
# gr.Markdown(
# """
# <p align="center">
# <img src="file/images/banner.png">
# </p>
# """
# )
with gr.Row():
input_text = gr.Textbox(
value=default_demo_text,
lines=13,
placeholder="Input text here...",
label="Input",
)
anonymized_text_output = gr.Textbox(label="Anonymized Text with FHE", lines=13)
identified_words_output = gr.Dataframe(label="Identified Words", visible=True)
submit_button = gr.Button("Anonymize with FHE")
submit_button.click(
deidentify_text,
inputs=[input_text],
outputs=[anonymized_text_output, identified_words_output],
)
with gr.Row():
chatgpt_response_anonymized = gr.Textbox(label="ChatGPT Anonymized Response", lines=13)
chatgpt_response_deanonymized = gr.Textbox(label="ChatGPT Deanonymized Response", lines=13)
chatgpt_button = gr.Button("Query ChatGPT")
chatgpt_button.click(
query_chatgpt,
inputs=[anonymized_text_output],
outputs=[chatgpt_response_anonymized, chatgpt_response_deanonymized],
)
# Launch the app
demo.launch(share=False)
|