pplonski commited on
Commit
7e8bb95
1 Parent(s): 42c2fcb

Create notebook.ipynb

Browse files
Files changed (1) hide show
  1. notebook.ipynb +279 -0
notebook.ipynb ADDED
@@ -0,0 +1,279 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "raw",
5
+ "id": "8c69730d",
6
+ "metadata": {},
7
+ "source": [
8
+ "---\n",
9
+ "title: Calculus Problem Generator\n",
10
+ "description: Generates Derivative and Integral Expressions at https://nsc9.github.io/\n",
11
+ "show-code : False\n",
12
+ "---"
13
+ ]
14
+ },
15
+ {
16
+ "cell_type": "code",
17
+ "execution_count": 1,
18
+ "id": "c5197005",
19
+ "metadata": {},
20
+ "outputs": [],
21
+ "source": [
22
+ "# recent change: Added useful links, Added plaintext version of expressions for easy copy/paste to a solver."
23
+ ]
24
+ },
25
+ {
26
+ "cell_type": "markdown",
27
+ "id": "6bdf2faf",
28
+ "metadata": {},
29
+ "source": [
30
+ "# Solve with pen and paper:"
31
+ ]
32
+ },
33
+ {
34
+ "cell_type": "code",
35
+ "execution_count": 2,
36
+ "id": "108761f9",
37
+ "metadata": {
38
+ "scrolled": false
39
+ },
40
+ "outputs": [],
41
+ "source": [
42
+ "from sympy.simplify.fu import TR22,TR2i\n",
43
+ "from sympy import ln,exp,Function,Derivative,Eq,Integral,factor_terms, sqrt, Symbol,Limit\n",
44
+ "from sympy import sin,cos,tan,Rational,nsimplify\n",
45
+ "import random\n",
46
+ "f = Function('f')\n",
47
+ "g = Function('g')\n",
48
+ "h = Function('h')\n",
49
+ "theta = Symbol('theta')\n",
50
+ "i = 0\n",
51
+ "dkeywords = {\"polylog\",\"Ei\",\"gamma\",\"Piecewise\",\"li\",\"erf\",\"Si\",\"Ci\",\"hyper\",\"fresnel\",\"Li\",\"expint\",\"zoo\",\n",
52
+ "\"nan\",\"oo\",\"abs\",\"re\",\"EulerGamma\", \"sinh\",\"tanh\", \"cosh\",'sign','abs','atan','csc','asin'} \n",
53
+ "ikeywords = {\"polylog\",\"Ei\",\"gamma\",\"Piecewise\", \"li\", \"erf\", \"atan\", \"Si\", \"Ci\", \"hyper\", \"fresnel\", \"Li\", \n",
54
+ "\"expint\",\"zoo\", \"nan\", \"oo\",\"EulerGamma\",\"sinh\",\"csc\",\"asin\"}\n",
55
+ "keywords2 = {\"sin\",\"cos\",\"tan\"}\n",
56
+ "def random_variable(i):\n",
57
+ " return Symbol(random.choice([i for i in ['v','t','x','z','y']]), real=True)\n",
58
+ "def random_value(i):\n",
59
+ " return random.choice([i for i in range(-10,10) if i not in [0]])\n",
60
+ "def power(a): \n",
61
+ " return random_value(i)*a**int(random_value(i)/2)\n",
62
+ "def scalar(a): \n",
63
+ " return a*random_value(i) + random_value(i)\n",
64
+ "def addSUBTR(a): \n",
65
+ " return a+random_value(i)\n",
66
+ "def dmain(a):\n",
67
+ " def random_math(a): \n",
68
+ " funs = [power,scalar,addSUBTR,power,scalar,addSUBTR,ln,exp,sin,cos,tan,sqrt] \n",
69
+ " operations = [f(a)*g(a)+h(a), f(a)-g(a)*h(a),f(a)/(g(a)-h(a)), f(a)/(-g(a)+h(a)),\n",
70
+ " f(a)+g(a)+h(a), f(a)-g(a)-h(a),f(a)+g(a)-h(a), f(a)-g(a)+h(a),\n",
71
+ " (f(a)*g(a))/h(a), f(a)/(g(a)*h(a)),f(g(h(a))),f(h(a))+g(a),f(h(a))-g(a),\n",
72
+ " f(h(a))/g(a),f(a)/g(h(a)),f(h(a))*g(a),f(a)*h(a)*g(a)]\n",
73
+ " operation = operations[random.randrange(0,len(operations))]\n",
74
+ " return [[[operation.replace(f, i) for i in funs][random.randrange(0,len(funs))].replace(g, i) for i in funs]\\\n",
75
+ " [random.randrange(0,len(funs))].replace(h, i) for i in funs][random.randrange(0,len(funs))]\n",
76
+ " return random_math(a)\n",
77
+ "def imain(a):\n",
78
+ " def random_math2(a): \n",
79
+ " funs = [power,scalar,addSUBTR,power,scalar,addSUBTR,ln,exp,sin,cos,tan,sqrt] \n",
80
+ " operations = [f(g(a)),f(a)+g(a),f(a)-g(a),f(a)/g(a),f(a)*g(a),\n",
81
+ " f(g(a))**2,2*f(a)+g(a),2*f(a)-g(a),2*f(a)/g(a),2*f(a)*g(a)]\n",
82
+ " operation = operations[random.randrange(0,len(operations))]\n",
83
+ " return [[operation.replace(f, i) for i in funs][random.randrange(0,len(funs))].replace(g, i) for i in funs]\\\n",
84
+ " [random.randrange(0,len(funs))]\n",
85
+ " return random_math2(a)"
86
+ ]
87
+ },
88
+ {
89
+ "cell_type": "code",
90
+ "execution_count": 8,
91
+ "id": "5ddcf6a5",
92
+ "metadata": {
93
+ "scrolled": false
94
+ },
95
+ "outputs": [
96
+ {
97
+ "data": {
98
+ "text/latex": [
99
+ "$\\displaystyle a' = \\frac{d}{d \\theta} \\left(- 3 \\theta + \\tan{\\left(\\theta \\right)} - 14\\right)$"
100
+ ],
101
+ "text/plain": [
102
+ "Eq(a', Derivative(-3*theta + tan(theta) - 14, theta))"
103
+ ]
104
+ },
105
+ "metadata": {},
106
+ "output_type": "display_data"
107
+ },
108
+ {
109
+ "data": {
110
+ "text/latex": [
111
+ "$\\displaystyle B = \\int 3 \\log{\\left(x \\right)}\\, dx$"
112
+ ],
113
+ "text/plain": [
114
+ "Eq(B, Integral(3*log(x), x))"
115
+ ]
116
+ },
117
+ "metadata": {},
118
+ "output_type": "display_data"
119
+ }
120
+ ],
121
+ "source": [
122
+ "derror = True\n",
123
+ "def dtest():\n",
124
+ " global setup1\n",
125
+ " global derror\n",
126
+ " global practice1\n",
127
+ " a = random_variable(i)\n",
128
+ " setup1 = dmain(a)\n",
129
+ " practice1 = Derivative(setup1,a) \n",
130
+ " p1eq = TR22(Eq(practice1,practice1.doit(),evaluate=False))\n",
131
+ " if any(kw in str(setup1) for kw in keywords2):\n",
132
+ " setup1 = setup1.replace(a,theta)\n",
133
+ " practice1 = Derivative(setup1,theta) \n",
134
+ " p1eq = TR22(Eq(practice1,practice1.doit(),evaluate=False))\n",
135
+ " if p1eq.rhs != 0 and not any(kw in str(p1eq) for kw in dkeywords):\n",
136
+ " derror = False\n",
137
+ " return p1eq\n",
138
+ "while derror == True: \n",
139
+ " output1 = dtest()\n",
140
+ "ierror = True\n",
141
+ "def itest():\n",
142
+ " global ierror\n",
143
+ " global practice2\n",
144
+ " global setup2\n",
145
+ " a = random_variable(i)\n",
146
+ " setup2 = imain(a)\n",
147
+ " practice2 = Integral(setup2,a) \n",
148
+ " p2eq = TR22(Eq(practice2,practice2.doit(),evaluate=False))\n",
149
+ " if str(factor_terms(p2eq.lhs)) != str(factor_terms(p2eq.rhs)) and not any(kw in str(p2eq) for kw in ikeywords)\\\n",
150
+ " and str(p2eq.lhs) != str(-p2eq.rhs): \n",
151
+ " if any(kw in str(setup2) for kw in keywords2):\n",
152
+ " setup2 = setup2.replace(a,theta)\n",
153
+ " practice2 = Integral(setup2,theta) \n",
154
+ " p2eq = TR22(Eq(practice2,practice2.doit(),evaluate=False))\n",
155
+ " ierror = False\n",
156
+ " return p2eq\n",
157
+ "while ierror == True:\n",
158
+ " output2 = itest()\n",
159
+ "a1 = Symbol(\"a'\")\n",
160
+ "B = Symbol('B')\n",
161
+ "eq1 = Eq(a1,nsimplify(output1.lhs))\n",
162
+ "eq2 = Eq(B,nsimplify(output2.lhs))\n",
163
+ "eq3 = Eq(a1,nsimplify(output1.rhs))\n",
164
+ "eq4 = Eq(B,nsimplify(output2.rhs))\n",
165
+ "def lhs():\n",
166
+ " display(eq1,eq2) \n",
167
+ " return\n",
168
+ "def rhs():\n",
169
+ " return display(eq3,eq4)\n",
170
+ "lhs()"
171
+ ]
172
+ },
173
+ {
174
+ "cell_type": "markdown",
175
+ "id": "2393180e",
176
+ "metadata": {},
177
+ "source": [
178
+ "___________________________________________________________________________________________________________________\n",
179
+ "If LaTeX display breaks, refresh the page. Runtime is under a second if you run the Jupyter-Notebook locally.\n",
180
+ "\n",
181
+ "**Created by GitHub.com/NSC9 - https://nsc9.github.io/ - MIT License - v7.5**\n",
182
+ "\n",
183
+ "Latest version source code: https://github.com/NSC9/Sample_of_Work/tree/Main/Artificial_Calculus_Teacher\n",
184
+ "\n",
185
+ "Donate by sending Bitcoin (BTC) to address: **bc1qtawr2gw52ftufzu0r3r20pnj3vmynssxs0mjl4**\n",
186
+ "\n"
187
+ ]
188
+ },
189
+ {
190
+ "cell_type": "code",
191
+ "execution_count": 9,
192
+ "id": "15c3f34f",
193
+ "metadata": {},
194
+ "outputs": [
195
+ {
196
+ "name": "stdout",
197
+ "output_type": "stream",
198
+ "text": [
199
+ "Derivative(-3*theta + tan(theta) - 14, theta)\n",
200
+ "Integral(3*log(x), x)\n"
201
+ ]
202
+ }
203
+ ],
204
+ "source": [
205
+ "print(eq1.rhs)\n",
206
+ "print(eq2.rhs)"
207
+ ]
208
+ },
209
+ {
210
+ "cell_type": "markdown",
211
+ "id": "30b55c90",
212
+ "metadata": {},
213
+ "source": [
214
+ "https://www.derivative-calculator.net/\n",
215
+ "\n",
216
+ "https://www.integral-calculator.com/\n",
217
+ "___________________________________________________________________________________________________________________\n",
218
+ "\n",
219
+ "# Answers:"
220
+ ]
221
+ },
222
+ {
223
+ "cell_type": "code",
224
+ "execution_count": 10,
225
+ "id": "fbec286d",
226
+ "metadata": {},
227
+ "outputs": [
228
+ {
229
+ "data": {
230
+ "text/latex": [
231
+ "$\\displaystyle a' = \\sec^{2}{\\left(\\theta \\right)} - 3$"
232
+ ],
233
+ "text/plain": [
234
+ "Eq(a', sec(theta)**2 - 3)"
235
+ ]
236
+ },
237
+ "metadata": {},
238
+ "output_type": "display_data"
239
+ },
240
+ {
241
+ "data": {
242
+ "text/latex": [
243
+ "$\\displaystyle B = 3 x \\log{\\left(x \\right)} - 3 x$"
244
+ ],
245
+ "text/plain": [
246
+ "Eq(B, 3*x*log(x) - 3*x)"
247
+ ]
248
+ },
249
+ "metadata": {},
250
+ "output_type": "display_data"
251
+ }
252
+ ],
253
+ "source": [
254
+ "rhs()"
255
+ ]
256
+ }
257
+ ],
258
+ "metadata": {
259
+ "kernelspec": {
260
+ "display_name": "Python 3 (ipykernel)",
261
+ "language": "python",
262
+ "name": "python3"
263
+ },
264
+ "language_info": {
265
+ "codemirror_mode": {
266
+ "name": "ipython",
267
+ "version": 3
268
+ },
269
+ "file_extension": ".py",
270
+ "mimetype": "text/x-python",
271
+ "name": "python",
272
+ "nbconvert_exporter": "python",
273
+ "pygments_lexer": "ipython3",
274
+ "version": "3.8.10"
275
+ }
276
+ },
277
+ "nbformat": 4,
278
+ "nbformat_minor": 5
279
+ }