File size: 39,176 Bytes
9de1fb0 e537973 9de1fb0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 |
{
"cells": [
{
"cell_type": "raw",
"id": "833c8e20",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"---\n",
"title: π Demo notebook\n",
"description: Simple notebook with widgets demo\n",
"output: slides\n",
"show-code: False\n",
"params:\n",
" name:\n",
" input: text\n",
" label: What is your name?\n",
" value: Piotr\n",
" mu: \n",
" input: slider\n",
" label: X-data mean\n",
" value: 0\n",
" min: -5\n",
" max: 5\n",
" sigma:\n",
" input: numeric\n",
" label: X-data sigma\n",
" value: 1\n",
" min: 0\n",
" max: 3\n",
" step: 0.01\n",
" points:\n",
" input: select\n",
" label: How many points?\n",
" value: 100\n",
" choices: [50, 100, 200, 500, 1000]\n",
" ---"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "d177ab3a",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"outputs": [],
"source": [
"from IPython.display import Markdown as md\n",
"from matplotlib import pyplot as plt\n",
"from random import gauss"
]
},
{
"cell_type": "markdown",
"id": "c418de47",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"<center>\n",
" <h1> π Interactive slides from notebook π </h1>\n",
" <br /><br />\n",
" by Piotr PΕoΕski\n",
"</center>"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "05963627",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"outputs": [],
"source": [
"name = \"Piotr\"\n",
"mu = 0\n",
"sigma = 1\n",
"points = 100"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "bf1faf4b",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"outputs": [
{
"data": {
"text/markdown": [
"# Welcome Piotr! π\n",
"\n",
"This presentation is interactive. You can change parameters on the left sidebar. \n",
"Please click `Run` to recompute the presentation with new values. \n",
"\n",
"How does it work?\n",
"\n",
"- The presentation was created in Jupyter Notebook and is converted to slides with [reveal.js](https://github.com/hakimel/reveal.js/) package.\n",
"- The interactive widgets are constructed by [Mercury](https://github.com/mljar/mercury) based on YAML config\n",
"- The presentation is served in HuggingFace Spaces!\n"
],
"text/plain": [
"<IPython.core.display.Markdown object>"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"md(f\"\"\"# Welcome {name}! π\n",
"\n",
"This presentation is interactive. You can change parameters on the left sidebar. \n",
"Please click `Run` to recompute the presentation with new values. \n",
"\n",
"How does it work?\n",
"\n",
"- The presentation was created in Jupyter Notebook and is converted to slides with [reveal.js](https://github.com/hakimel/reveal.js/) package.\n",
"- The interactive widgets are constructed by [Mercury](https://github.com/mljar/mercury) based on YAML config\n",
"- The presentation is served in HuggingFace Spaces!\n",
"\"\"\")"
]
},
{
"cell_type": "markdown",
"id": "c513d59d",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"# Let's generate some data π»"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "44ecce51",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"outputs": [],
"source": [
"# random data from gaussian distribution\n",
"data_x = [gauss(mu, sigma) for _ in range(int(points))]\n",
"data_y = [gauss(0, 1) for _ in range(int(points))]"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "1b26db10",
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAtIAAAFzCAYAAAATwu58AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xl8VOXZ//HvJXslIEhUBCKLuIOPEhGUR0BEKq5sFalbFVBAsdaloA/2sa2KraioKKK4VG1VEC2KCqhAXVAItm6PFfghglAqEDBAJWzX74+ZRAhJyNzMmcmEz/v1mtfJzLnPfa7JySTf3HPPOebuAgAAAJCY/dJdAAAAAJCJCNIAAABAAII0AAAAEIAgDQAAAAQgSAMAAAABCNIAAABAAII0AAAAEIAgDQAAAAQgSAMAAAABCNIAAABAgOrpLqCiGjVq5M2bN093GQAAAKjiFixYsMbds/fULmOCdPPmzZWXl5fuMgAAAFDFmdk3FWnH1A4AAAAgAEEaAAAACECQBgAAAAIQpAEAAIAABGkAAAAgQIWDtJkdaWbXmdmzZvZPM9thZm5mfSuw7QAze9fMvjezjWaWZ2bDzIwgDwAAgIyUyOnvhki6LtEdmNk4SUMlbZb0tqStkrpJekhSNzPr6+47Eu0XAAAASKdERoQ/l/RHSRdKOlzSnD1tYGZ9FAvRqyS1dfdz3L2XpNaSvpTUS9K1iRYNAAAApFuFR6Td/fGd75tZRTYbGV/+2t0X7dTXv81siKTZkkaY2YOMSgMAACCTRHZlQzNrKqmdpC2SJpVc7+5zzGyFpCaSOkj6IKpaAABAZigsLFR+fr42bNig7du3p7scZLhq1aopKytLDRs2VK1atZLef5SXCD8hvvzC3X8oo818xYL0CSJIAwCwTyssLNSyZcvUoEEDNW/eXDVq1KjoO+DAbtxdW7duVUFBgZYtW6acnJykh+koz5rRIr4s71rly0q0BQAA+6j8/Hw1aNBAjRo1Us2aNQnR2Ctmppo1a6pRo0Zq0KCB8vPzk76PKIN03fhyUzltNsaXWRHWAQAAMsCGDRtUr169dJeBKqhevXrasGFD0vuNcmrHXjOzwZIGS1JOTk6aqwEAJGTWXeHbdh255zaocrZv364aNWqkuwxUQTVq1Ihkzn2UI9JFo837l9OmaNS61H8R3H2Cu+e6e252dnZSiwMAAJUP0zkQhah+rqIM0kvjy8PKadOsRFsAAAAgI0QZpP8eXx5rZnXKaHNSibYAAABARogsSLv7ckkfS6opqV/J9WbWWVJTxa56ODeqOgAAAKqC6dOny8x0wAEH6Ntvvy2z3aWXXioz09lnn520fTdt2lRmVu5+90VRf9jwLsUuxnK3mX3g7oslycwOkvRwvM1ormoIAAAq4r6ZC9NdQkKu735E0vrq0aOHBg4cqMcff1yDBg3SG2+8sVubqVOn6plnntEBBxygxx57LGn7Tqa33npL3bt3V7du3fTWW2+lu5y9UuERaTM70cw+LLpJOjG+6s4Sjxdz98mSHpF0iKTPzOxVM5siaZGkYyS9IumhpDwTAACAKm7MmDFq1qyZ3nzzTT3++OO7rMvPz9dVV10lSRo7dqwOPfTQdJS4T0lkakc9SSfvdCs693PrEo/vwt2HSvq5YtM8OkvqIWmxpGsk9XF3rv8JAABQAfXq1SsO0DfccIOWL19evG7YsGFatWqVzj33XF166aXpKnGfUuEg7e6z3d32dCtj2z+7+6nuXs/d93f3du4+jikdAAAAiTnzzDM1aNAgFRQUaODAgZKkKVOm6Pnnn1fDhg316KOPBvX79ddf65JLLtFBBx2kOnXq6Nhjj9U999xT7vmXP//8c40aNUodO3bUoYceqpo1a+qggw7S2WefrRkzZuzWvlOnTurevbsk6e2335aZFd/OOOOMXWq588471aVLFzVr1ky1atVSw4YNdfrpp+v5558Pen5RqNQXZAEAAMDuxowZo+nTp2vGjBm68847NXbsWEnSAw88oMaNGyfc3+eff67OnTsrPz9fOTk5Ov3005Wfn69bbrlF8+fPL3O7e+65R3/605901FFH6fjjj1dWVpaWLFmi119/Xa+//rrGjh2r4cOHF7fv2bOn9t9/f82YMUONGzfWmWeeWbzu2GOPLf766aef1u23367DDz9cRx99tE499VQtX75cc+bM0axZszRv3jzde++9CT/PZDN3T3cNFZKbm+t5eXnpLgMAUFFc2RAJ+vLLL3X00UeX22Zf/rBhSUUf2itywQUX6OWXX064H3fXCSecoE8++USXX365JkyYUHyFyc8++0ynn3661qxZI0lavny5mjZtWrztrFmz1LJlSx122K6XDZk7d6569OihwsJCLV26dJdwX5EPG86bN09ZWVm7/Tx89dVX6tatm1asWKG8vDy1a9euws+zIj9fRcxsgbvn7qldlOeRBgAAQETOOOMM5ebGsl716tX18MMP72GL0s2ePVuffPKJGjRooAceeGCXy7S3adNGt9xyS5nbdu3adbcQLUkdO3bUkCFDtGXLFk2dOjXhmtq3b19q6D3yyCN16623SpImT56ccL/JxtQOAACADPTSSy+p6N36bdu2afLkybr22msT7mfOnDmSpPPOO09ZWVm7rb/kkkv0q1/9qsztCwoKNG3aNH3yySdau3attm7dKklauHDhLstEbd68WW+++aby8vK0evVqFRYWSpJWrly5V/0mE0EaAAAgw6xZs0ZDhw6VJA0fPlwPPvigRo4cqXPOOUctWrTYpe2dd965W+isVq2aJk6cKEnFF1kpuV2RRo0aqW7dutq4ceNu66ZMmaKBAwdq3bp1ZdZaUFBQ8ScW995776l///5asWJFUvtNNqZ2AAAAZJihQ4fqu+++U9++fTV27FhdffXV2rRpk6688kqV/Pzb66+/rqeffnq329765ptvNGDAAK1fv1633nqrPvvsMxUUFGj79u1yd40bN06SdqtnTzZu3KjevXtrxYoVGjx4sBYsWKD169cX9ztt2rSgfqNAkAYAAMggkyZN0qRJk5SdnV08L/oPf/iDDjvsMM2aNUvjx4/fpf17770nd9/ltm3btuL1TZo0kSQtXbq01P2tWbOm1NHoV199VYWFhfrZz36m3//+9zruuOOUlZWl/faLxcvFixcHPb/Zs2dr9erVOvnkk/Xoo4/qxBNPVP369fe63ygQpAEAADLE6tWrNWzYMEnSuHHjlJ2dLUmqW7du8SXBb775Zn3zzTcV7rNz586SYpcXLy0wP/fcc6Vul5+fL0lq1qzZbus2b96sKVOmlLpdzZo1JWmXMF/Rft1df/nLX0rdLh0I0gAAABliyJAhWr16tfr166d+/frtsq579+4aOHCgNm7cqEGDBlW4z65du6pNmzbKz8/XL3/5y10C7hdffKE77rij1O2OOuooSbER8u+++6748cLCQg0bNqzMMF80Ar5o0aJSL/ZS1O/MmTO1aNGi4sd37Nih3/zmN/rwww8r/NyiRpAGAADIAC+88IJeeuklZWdnF88/LmnMmDFq2rSpZs6cWTxCvSdmpmeeeUYNGjTQxIkTdfjhh+uiiy5Sjx49dOKJJ6pLly7F4XdnF1xwgdq2batvvvlGrVu31nnnnad+/fqpRYsWmjRpUplnEGnVqpXatm2rlStXqm3btrr00ks1cODA4gustG/fXmeddZa+//57tWnTRmeddZb69++vww8/XKNHj9ZNN91Uwe9Y9AjSAAAAldx3332na665RtKuUzpKqlevniZMmCBJuvHGG7V8+fIK9X/88cdr/vz5GjBggDZt2qSXX35Zy5Yt0+23317mVIqaNWvq3Xff1Y033qiDDz5YM2bM0Pvvv6+uXbtqwYIFatu2bZn7e+WVV9S3b1+tWbNGzz33nCZOnKjXX3+9eP3LL7+sO+64Q61atdLs2bP1zjvvqE2bNnr//fd3uRpiunFlQwBANLiyIRKUyJXngERxZUMAAACgkiBIAwAAAAEI0gAAAEAAgjQAAAAQgCANAAAABCBIAwAAAAEI0gAAAEAAgjQAAAAQgCANAAAABCBIAwAAAAEI0gAAAEAAgjQAAAAQgCANAAAABCBIAwAAAAEI0gAAAJXc2WefLTPTFVdcUW67OXPmaL/99lNWVpa+/vrrvd5v//79ZWZ6/vnn97qvqqh6ugsAAACosFl3pbuCxHQdmZRuHnvsMR133HF68skn1bdvX/Xs2XO3Nps2bdIVV1whd9c999yjFi1aJGXfybJ582bVqVNHtWrV0ubNm9NdTlIwIg0AAFDJHXrooXrwwQclSYMGDdL69et3azNixAgtWbJEZ555pq666qpUl7hPIkgDAABkgJ///Ofq3bu3Vq5cqeHDh++ybs6cORo3bpzq16+viRMnpqnCfQ9BGgAAIEOMHz9e2dnZeuaZZzR16lRJu07pGDt2rJo2bZpQnxs2bNCvf/1rtWjRQrVq1VJOTo6GDx9e6qh3kVWrVunee+/VmWeeqebNm6t27do64IADdMopp+jRRx/Vjh07dmk/YsQI1alTR5JUWFgoMyu+1a5du7jd999/r/Hjx+u8885Tq1at9JOf/ERZWVlq166d7r77bhUWFib03KLGHGkAAIAMkZ2drUceeUR9+/bVVVddpU6dOum2227TkiVLdO655+qyyy5LqL+CggJ17txZ//jHP1S/fn317NlTZqZnnnlGM2fOLHOe9WuvvaYbbrhBOTk5atWqlTp06KBVq1Zp7ty5mjt3rt555x298MILxe3btWuniy++WM8++6z2228/XXLJJcXratSoUfz1/PnzNWTIEB1yyCE64ogj1L59e61evVofffSRRowYoddee01vv/22atasmeB3LhoEaQAAgAzSp08fDRgwQH/+85/Vs2dPzZs3TwceeKAee+yxhPsaOXKk/vGPf6hdu3aaPn26DjzwQElSfn6+fvrTn+qNN94odbsOHTpo/vz5ys3N3eXxFStWqEePHnrxxRc1YMAAnX/++ZKkfv366dxzz9Wzzz6rGjVq6Kmnniq139atW2v27Nk67bTTZGbFj+fn56tfv35655139Mgjj+i6665L+LlGgakdAAAAGebBBx9U48aN9dFHH8ndNW7cOB188MEJ9VFQUKAnnnhCkvTQQw8Vh2hJatiwocaNG1fmtscdd9xuIVqSmjRporvuip1ZZfLkyQnVI0mHHXaYOnfuvEuILqrn/vvvD+43KoxIAwAAZJiGDRvqlltu0bXXXqt27drpwgsvTLiPefPmafPmzcVTM0o66aSTdOSRR+qrr74qdfutW7fqrbfe0kcffaRVq1apsLBQ7l48t3rhwoUJ1yRJ7q6//e1veu+997RixQr98MMPcndt27Ztr/qNAkEaAAAgA9WtW3eXZUmTJk3StGnTdnt81KhRatWqlb799ltJKvd8082bNy81SH/xxRfq1auXFi1aVOa2BQUF5dZfmpUrV+qCCy7Q/Pnzk9pvVAjSAAAAVdCCBQv09NNP7/b41VdfrVatWgX3u2PHDvXu3VuLFi1Snz59dMMNN+ioo45SvXr1VK1aNX366ac6/vjj5e4J933ZZZdp/vz56tKli2677Ta1adNG9evXV40aNVRQUKD69esH9RsVgjQAAEAVNHr0aI0ePbrM9U2aNJEkLV26tMw2pa379NNPtXDhQjVr1kwvvvii9ttv14/cLV68OKjedevWFZ+R47XXXtP++++flH6jxIcNAQAA9kEnn3yyateurcWLF2vevHm7rV+wYEGp0zry8/MlxYJ4yRAtSc8991yp+ys6zd327dtLXb9u3Tq5uxo2bLhbiC6v33QiSAMAAOyD6tWrV3ze6WuuuaY4IEuxUDts2LBStzvyyCNlZvr444/14Ycf7rJu/PjxmjJlSqnbVatWTYcccoi2bdtW6tzqpk2bqm7dulq1atVufUydOlUPPfRQQs8vFQjSAAAA+6i7775bbdu21fz589WqVSv17t1bvXv3VsuWLbV+/XqdddZZu23TpEkTXXnlldqyZYs6deqkM844QxdddJGOOeYYDR06VCNHjixzf7169ZIknXbaaerfv78GDhyoIUOGSJJq1qypESNGSIqdK7tTp04aMGCATjrpJJ1//vm68cYbI/gO7B2CNAAAwD6qfv36evfdd3XTTTepfv36mjZtmubPn6+LLrpIH3zwgerVq1fqduPHj9e4ceN03HHHae7cuZo+fbqaNWumGTNm6NJLLy1zf3/84x81fPhw1a5dW1OmTNHEiRP15JNPFq+/9dZb9fzzz6t9+/b69NNPNW3aNNWuXVsvvPCCRo0alfTnv7esMn3ysTy5ubmel5eX7jIAABU1667wbbuWPaKFquvLL7/U0Ucfne4yUEUl8vNlZgvcffcrzpTAiDQAAAAQgCANAAAABEhJkDazpmb2oJl9ZWY/mNlmM1tkZuPNrGUqagAAAACSKfIgbWYnSPpM0jWSfiJpuqQ3JdWRdJWkT8zslKjrAAAAAJIpFSPS4yQdIOkxSS3d/QJ3v0BSC0lPSKor6ZEU1AEAAAAkTaRB2sxqS+oYv/sbd99atC7+9f/E77Y1s59EWQsAAACQTFGPSG+XtK0C7TZJ+iHiWgAAAICkiTRIx0ed347fvd3MahSti3/9u/jdiZ4pJ7QGAAAAJFVPwT6GKvbhwkGSzjKzoquqnCSpgaT7Jd2cgjoAAEAl5+4ys3SXgSomqvHayIO0uy+Jn5XjT5LOktR0p9V5kt7dee40AADYN1WrVk1bt25VzZo1010KqpitW7eqWrVqSe838iAdD9FTJBVIOl/SB/FVp0oaI+klM/uNu/+2lG0HSxosSTk5OVGXCgBpd9/MhQm1v777ERFVAqReVlaWCgoK1KhRo3SXgiqmoKBAWVlZSe836rN2HCDpFUlZkn7q7lPdfU389ldJP1XsQ4ajzKx1ye3dfYK757p7bnZ2dpSlAgCANGvYsKHWrVunNWvWaMuWLZG9HY99g7try5YtWrNmjdatW6eGDRsmfR9Rj0ifLSlb0jvuvqTkSndfbGYfSeoSvy2KuB4AAFBJ1apVSzk5OcrPz9fSpUu1ffv2dJeEDFetWjVlZWUpJydHtWrVSnr/UQfpovkY35fTZn18mfx/EwAAQEapVauWGjdurMaNG6e7FGCPoj6P9Mr4st3Op74rEn+sXfzu1xHXAgAAACRN1EH6DUn/UWxk+j4zKx5Tj3/9gKRmktZJmh5xLQAAAEDSRDq1w92/M7OhkiZKGiapl5l9HF/dTlJjSYWSrnD38qZ/AAAAAJVK1CPScvenJbWX9IykLZK6x28/KBawT3T3V6KuAwAAAEimVFzZUO7+saRLU7EvAAAAIBUiH5EGAAAAqiKCNAAAABCAIA0AAAAEIEgDAAAAAQjSAAAAQACCNAAAABCAIA0AAAAEIEgDAAAAAQjSAAAAQACCNAAAABCAIA0AAAAEIEgDAAAAAQjSAAAAQACCNAAAABCAIA0AAAAEIEgDAAAAAQjSAAAAQACCNAAAABCAIA0AAAAEIEgDAAAAAQjSAAAAQACCNAAAABCgeroLAICy3DdzYULtr+9+RESVSJp1V9Bmc5eslSR9mDM4mdUAACoBRqQBAACAAARpAAAAIABBGgAAAAhAkAYAAAACEKQBAACAAARpAAAAIABBGgAAAAhAkAYAAAACEKQBAACAAARpAAAAIABBGgAAAAhAkAYAAAACEKQBAACAAARpAAAAIABBGgAAAAhAkAYAAAACEKQBAACAAARpAAAAIABBGgAAAAhAkAYAAAACEKQBAACAAARpAAAAIEDKgrSZ1TGzm81svpmtN7P/mNnXZjbJzE5NVR0AAABAMlRPxU7MrIWkGZIOl/QvSbMkbZN0mKQLJH0i6f1U1AIAAAAkQ+RB2sz2lzRTUktJIyTd4+7bd1p/oKQDo64DAAAASKZUjEj/j6RWkh5y97tLrnT3tZLWpqAOAAAAIGkinSNtZjUlDYrfvTfKfQEAAACpFPWIdDvFpm2scPevzexESb0kHSTp35JmuPt7EdcAAAAAJF3UQbpNfLnCzO6RdEOJ9aPM7BVJF7v7pohrAQAAAJIm6tPfNYwvT1AsRN+v2Jk7Gkg6X9IKxc7a8XDEdQAAAABJFfWIdFFQryHpWXe/fqd1U81spaR5ki4xs9+6+//beWMzGyxpsCTl5OREXCqwj5l1195t33VkcupIpb19zgAA7CTqEekNO339WMmV7p4naYEkk9S5lPUT3D3X3XOzs7OjqxIAAABIUNRB+usyvi6tzSER1wIAAAAkTdRB+u87fV3WRVcaxZcbI64FAAAASJpIg7S7r5D0Ufxut5LrzayBpBPjd/OirAUAAABIpqhHpCXpjvjyFjPLLXrQzGpLekRSfcXmSc9NQS0AAABAUkR+iXB3f9XMxih2+rsPzOxDxS4J3l7SoYqdAu8id/eoawEAAACSJRUj0nL3GyX1kfSeYhdp6SnpP4pdNvwEd1+UijoAAACAZIl8RLqIu0+RNCVV+wMAAACilJIRaQAAAKCqIUgDAAAAAQjSAAAAQACCNAAAABCAIA0AAAAEIEgDAAAAAQjSAAAAQACCNAAAABCAIA0AAAAEIEgDAAAAAQjSAAAAQACCNAAAABCAIA0AAAAEIEgDAAAAAQjSAAAAQACCNAAAABCAIA0AAAAEIEgDAAAAAQjSAAAAQACCNAAAABCAIA0AAAAEIEgDAAAAAaqnuwDs2+6buTDhba7vfkTpK2bdtXfFdB25d9tHqKzvU4dlE0p9vGPLAxPex9wlaxNq37FrwrtABJL6GgIAJIQRaQAAACAAQRoAAAAIQJAGAAAAAhCkAQAAgAAEaQAAACAAQRoAAAAIQJAGAAAAAhCkAQAAgAAEaQAAACAAQRoAAAAIQJAGAAAAAhCkAQAAgAAEaQAAACAAQRoAAAAIQJAGAAAAAhCkAQAAgAAEaQAAACAAQRoAAAAIQJAGAAAAAhCkAQAAgAAEaQAAACAAQRoAAAAIQJAGAAAAAqQ8SJvZnWbm8duNqd4/AAAAkAwpDdJmdpKkmyV5KvcLAAAAJFvKgrSZ1ZL0tKR/S/prqvYLAAAARCGVI9K/lXS0pKslfZ/C/QIAAABJl5IgbWYnS7pB0p/d/dVU7BMAAACIUuRB2sxqKzalI1/SdVHvDwAAAEiF6inYxx2SjpTU393XpGB/AAAAQOQiHZE2s1Mk/VLSK+7+QpT7AgAAAFIpshFpM6sj6SlJBZKGBvYxWNJgScrJyUlabaiAWXeFb9t1ZPLqSKW9ec57I0O/X/fNXJhQ++u7H/HjnQp+rzssW7vbYx/mDE5ov1VBh2UTgrfdq+9Xil4Tc5eUcpy3lf/ztcvPU1XB7yAg40Q5In2npNaSfuXu/wrpwN0nuHuuu+dmZ2cntzoAAABgL0Q5R7qXpB2SLjOzy0qsOyq+HGJm50ha7O4DI6wFAAAASKqoP2y4n6TO5axvGb8dEHEdAAAAQFJFNrXD3Zu7u5V2U+x0eJJ0U/yx/4qqDgAAACAKqbyyIQAAAFBlEKQBAACAAARpAAAAIEAqrmy4G3e/XNLl6dg3AAAAkAyMSAMAAAABCNIAAABAAII0AAAAEIAgDQAAAAQgSAMAAAABCNIAAABAAII0AAAAEIAgDQAAAAQgSAMAAAABCNIAAABAAII0AAAAEIAgDQAAAAQgSAMAAAABCNIAAABAAII0AAAAEIAgDQAAAAQgSAMAAAABCNIAAABAAII0AAAAEIAgDQAAAAQgSAMAAAABCNIAAABAgOrpLgDh7pu5MKH213c/IqJKqpa5S9Ym1L5jywP3ah8fbkvsOO7rOiybUOa6uROj3XfIsS5SXt2oRGbdFb5t15HJqwNARmBEGgAAAAhAkAYAAAACEKQBAACAAARpAAAAIABBGgAAAAhAkAYAAAACEKQBAACAAARpAAAAIABBGgAAAAhAkAYAAAACEKQBAACAAARpAAAAIABBGgAAAAhAkAYAAAACEKQBAACAAARpAAAAIABBGgAAAAhAkAYAAAACEKQBAACAAARpAAAAIABBGgAAAAhAkAYAAAACRBqkzayGmXUzszFmlmdmBWa2xcxWmNlkM+sS5f4BAACAqFSPuP/OkmbGv14l6W+SNkk6RlIfSX3M7HfuflvEdQAAAABJFfXUjh2SXpJ0mrs3dvdz3P1Cd28jqb+k7ZJGmVnXiOsAAAAAkirSIO3u77h7X3d/t5R1L0h6Kn734ijrAAAAAJIt3R82/Ht82TStVQAAAAAJSneQbh1f/iutVQAAAAAJSluQNrNDJF0ev/tSuuoAAAAAQqQlSJtZdUnPSqov6W13fzUddQAAAAChoj79XVnGS+omabnK+aChmQ2WNFiScnJyUlNZFdFh2YTdH5x1YOoLSVCpdZdUyZ7H3CVr92r7Cj3nBO1tTVG4b+bC4q87LKt89VVV6fhdkIyfvz29LuZOTKy/ji2j/72x8894iHS9Lj7c9mPd13c/IqFt9/Y5V0SiNQGplPIRaTMbK+lKxc4r3c3dV5XV1t0nuHuuu+dmZ2enrEYAAABgT1IapM1sjKThklYrFqIXpXL/AAAAQLKkLEib2R8k/UrSWklnuPv/pWrfAAAAQLKlJEib2WhJN0laJ6m7u3+aiv0CAAAAUYk8SJvZ7yX9WtJ6xUL03/ewCQAAAFDpRXrWDjM7T9Kt8buLJV1rZqU1/ae7j46yFgAAACCZoj79XcOdvs6N30ozRxJBGgAAABkj0iDt7k9JeirKfQAAAADpkLZLhAMAAACZjCANAAAABCBIAwAAAAEI0gAAAEAAgjQAAAAQgCANAAAABCBIAwAAAAEI0gAAAEAAgjQAAAAQgCANAAAABCBIAwAAAAEI0gAAAEAAgjQAAAAQgCANAAAABCBIAwAAAAEI0gAAAEAAgjQAAAAQgCANAAAABCBIAwAAAAEI0gAAAEAAgjQAAAAQgCANAAAABDB3T3cNFZKbm+t5eXnp2fmsu4I2m7tkrT7MGZzkYiqmw7IJadlvZdSx5YEJtZ+7ZG1ElQBA5bM3f6dS8bemzN/hXUeW+vB9Mxfusc8NJ6AaAAAI00lEQVSd6070b0RZ+0UZAjOUpLR+r81sgbvn7qkdI9IAAABAAII0AAAAEIAgDQAAAAQgSAMAAAABCNIAAABAAII0AAAAEIAgDQAAAAQgSAMAAAABCNIAAABAAII0AAAAEIAgDQAAAAQgSAMAAAABCNIAAABAAII0AAAAEIAgDQAAAAQgSAMAAAABCNIAAABAAII0AAAAEIAgDQAAAAQgSAMAAAABCNIAAABAAII0AAAAECBlQdrMBpjZu2b2vZltNLM8MxtmZoR5AAAAZJyUhFgzGyfpOUm5kt6VNFPSEZIekjSZMA0AAIBME3mANbM+koZKWiWprbuf4+69JLWW9KWkXpKujboOAAAAIJlSMRI8Mr78tbsvKnrQ3f8taUj87ghGpQEAAJBJIg2vZtZUUjtJWyRNKrne3edIWiHpEEkdoqwFAAAASKaoR4FPiC+/cPcfymgzv0RbAAAAoNKLOki3iC+/KafNshJtAQAAgEov6iBdN77cVE6bjfFlVsS1AAAAAElTPd0FlMfMBksaHL+70cy+Smc9YcbsbQeNJK1JQiFIPY5d5uLYZS6OXcL2+u9UMiVw/G6JtJDKt99KL4LXXlq/14dVpFHUQbpotHn/ctoUjVpvKLnC3SdImpDsojKJmeW5e26660DiOHaZi2OXuTh2mY3jl7n21WMX9dSOpfFleam+WYm2AAAAQKUXdZD+e3x5rJnVKaPNSSXaAgAAAJVepEHa3ZdL+lhSTUn9Sq43s86Smip21cO5UdaSwfbpqS0ZjmOXuTh2mYtjl9k4fplrnzx25u7R7sCsr2IXY1kl6b/dfXH88YMkzZJ0jKRfuvvYSAsBAAAAkijyIC1JZvawYpcD3yzpLUlbJXWTVE/SK5L6uvv2yAsBAAAAkiTqOdKSJHcfKunnik3z6Cyph6TFkq6R1IcQXTFmdqSZXW9mb5rZv8xsq5l9b2ZzzeyXZlYr3TWidGa2v5n93MzuN7P3zWyTmbmZvZbu2vAjMxtgZu/GX1cbzSzPzIaZWUp+VyJx8d+L15nZs2b2TzPbEX9t9U13bSibmdUws25mNib+Oiswsy1mtsLMJptZl3TXiLKZ2bVm9qKZfWlma+N5ZLWZvWVmF5uZpbvGVEnJiDSSw8y+ldREsZH9PEnfSjpYUkdJtRX7wOYZ7p6ftiJRKjP7L5X+gdpp7n5OquvB7sxsnKShir2+3taP75xlSXpZsXfOdqSvQpTGzO6XdF0pq/q5++RU14OKMbMzJM2M310laYFiF287RtJx8cd/5+63paE87EE8jxwk6XNJKxQ7dodJOlmSSfqrpN77wu9MRlkyy1eSrpSU7e7/7e4Xufvpko6W9IWkEyTdl84CUaYNkp5QLKidLOnq9JaDnZlZH8WOzSpJbd39HHfvJam1pC8l9ZJ0bRpLRNk+l/RHSRdKOlzSnPSWgwraIeklSae5e+P4a+5Cd28jqb+k7ZJGmVnXtFaJsvSX1MDdT3T3c929v7t3lNRG0r8lnS/psrRWmCKMSFcRZtZJ0ruKjabVd/ctaS4J5TCzyyU9KUakKwUzy5PUTtJl7v6nEus6S5qtWMhusi+MsGQyM5ut2BRCRqQzmJk9rtjA0RPufmW660HFmdkoSb+V9Bd3H5DueqLGiHTVUTRtoLakA9NZCJBJzKypYiF6i2JnGNqFu89R7K3LQyR1SG11wD6r6G9a07RWgRDb4svCtFaRIgTpqqN1fLlFEnOkgYo7Ib78wt1/KKPN/BJtAUSr6G/av9JaBRJiZi3049TFqemsJVWqp7sAJM2I+PI1d98n/gsEkqRFfPlNOW2WlWgLICJmdoiky+N3X0pjKdgDM/uFYlOpaij27sEpig3S3unuL6eztlQhSFcB8fm2F0r6j6Rb0lsNkHHqxpebymmzMb7MirgWYJ9mZtUlPSupvqS33f3VNJeE8p2qXT9UuE3SKEn3pqec1CNIp4iZ/UHSeQGbdnP3FeX0203So5Jc0lXu/lVgiShDVMcOALCb8YqddnK5pIvTXAv2wN0HShpoZnUUe8fuF5L+V9LPzKynu69MZ32pQJBOnUMlHRmwXY2yVsTP1PFXSTUlDXf3ZwNrQ/mSfuxQqRSNNu9fTpuiUesNEdcC7LPMbKxiZ+pYpdhAxKo0l4QKin++5P8k3WRmqyTdI+khSb3TWlgK8GHDFHH3i93dAm5LS+vPzE6R9Lpif/xvdvcHU/l89iXJPnaodJbGl4eV06ZZibYAksjMxkgaLmm1YiF6UZpLQrin4stzzazKDygRpDOQmXWQ9KZi8zX/x93/mOaSgExWdJqtY+NvT5bmpBJtASRJfPrcryStVezqvP+X5pKwd9YpNle6uqSGaa4lcgTpDGNm7SVNVyxE/6+735HmkoCM5u7LJX2s2BSpfiXXxy/I0lSxt5vnprY6oGozs9GSblIsfHV390/TXBL23mmKhej1ktakuZbIEaQziJnlSpohqZ6k37n77WkuCagq7oov7zazw4seNLODJD0cvzuaqxoCyWNmv5f0a8UCV3d35x2fDGBmnczsnPgZVkquO1XSxPjdie6+PbXVpR6XCM8gZpYvqYFiv3T+Wk7TG929yv8XmGnM7GVJjeN3syW1VOxY7nymld+5+7RU1wbJzB6WNETSZklvSdqq2NkD6kl6RVLffeGPQqYxsxP14z87knSMYu/YLdJOF6dyd65KWYmY2Xn68e9YnqQvymj6T3cfnZqqUBHxU+4+qdjfr48Ve7cuS1IrxV5/kjRNUr9yLnJVZRCkM4iZVfRgteCDbpWPmS1V+R9ok6RfuPtT0VeD0pjZAEnDJLWRVE3SPyU9IekRRqMrJzPrImnWntq5u0VfDSpqpzC2J3PcvUu01SAR8asX/kLSfysWnrMlmWKBOk/Ss+7+SvoqTC2CNAAAABCAOdIAAABAAII0AAAAEIAgDQAAAAQgSAMAAAABCNIAAABAAII0AAAAEIAgDQAAAAQgSAMAAAABCNIAAABAAII0AAAAEOD/A6zREIJD7thXAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 864x432 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plt.figure(figsize=(12,6))\n",
"plt.rcParams.update({'font.size': 22})\n",
"_ = plt.hist(data_x, bins=40, label=\"X-data\", alpha=0.5)\n",
"_ = plt.hist(data_y, bins=40, label=\"Y-data\", alpha=0.5)\n",
"_ = plt.legend()"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "200b4030",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAtYAAAGJCAYAAACuIHR5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3XmcXFWd9/Hv1yRgC0gjJmIa2QTj6EQNxjUqaHAy4/ZElNFRnwEeNW7jOkbDuOHjQjSD6KijoiMZRcdxwXY0PsYlgsCgY7BHwSWDxKA2IKC0snQghN/zx71FVzq19627VH3er1e9qqvuqVunbt9b9bvn/s45jggBAAAAmJu7FV0BAAAAYBAQWAMAAAAZILAGAAAAMkBgDQAAAGSAwBoAAADIAIE1AAAAkAECa6ALtk+xHQ1uu21P2Z6w/X7bDyy6rlmxfX76GTcWXZdBZvuIuv3p+KLrA3Sqbr89pei6AEUjsAaycTdJB0p6mKRXS/qx7RcXWyVgTwRA3et0m9nemJY7P5+aDYf6xoyi6wJ0gsAa6N1TJB2Q3u4l6RGSNki6Q9I+kj5q+5HFVQ8AAORpftEVACpsOiJurnu8VdJW29dIep+SE9fXSvqbIiqHaomIHZJcdD0AAL2jxRrI3ock3ZL+/bgiKwIAAPJDYA1kLCJ2SboyfbioWTnbY7Zfavurtn9t+zbbt9j+H9sft/3nLV67R0c32/Ntv9r2pbZvSm8/sL3GdstWUNsH2z7T9i9t77R9re1x2x2fFNheaPvdtn9s+0+2p21fmX6OB7d43R75k7YX2/5A+tpp21fZPtv2oXWvuZvtF9m+xPaNtm+2fZHtp3da3wb1OL5uex6Rfp4zbV+R1uP6dJus6GBdB9g+Ld3+N6bb9Ne2P9Pq9e06L9rekS47PX38DNvfTOu20/Y22++yfc8Grz1/Vo7qOQ064B4/6zVPsX2e7d+k++ZNtrfbvsD222z/Wbtt0eRzPtb2uem6pm3fmv6fL7G93vYjWrz2QNtvtP0929el9fqt7Yttn2H7AQ1e09Nx1uk2q+3Dkk5Oyx3XoNzGJu+x0vZn08+/0/Yfbf/Q9jrb+zV5zexjfyQtf6mTDtRhe3WzbdhgfbP3q1PT7fmHdDtd6uS7ZU5XuNN6/5PtX6TrvcX2z50c74c3+5ySzql7bvZ23TGXOgF9ERHcuHHr8CbpFEmR3o5vUe6ytMy1LcrcWLeuRrddkk5t8toj6so9VdKFLdbziRZ1WCLp6iavu0PSGknnp483NlnHEyVNtXj/OyS9poPt+TBJ1zVZx1WS7ifp7pK+2uK9/k+P/9fj69bxREm/abL+OyW9qsV6lkr6bZv/6wZJbvM/3WvfkrQjXXa6pLNarP+/Je0/67Xntyi/13tK+mAH5T/Uw3Z+fQfr/VqT1z5J0vVtXjue1XHW6TbTnvtws9vGWeu+u6TPtnnNlZKOabOfPEsz3zX1t9Vd/E/q96tzW9TnAkn7NVlHrcwpTZY/V9LOFuuelnRSi8/Z7Lajl+OdG7d+3gqvADduVbqpg8Ba0gIlqSAhaUuLdV0k6S2STpD0IEkHS7q/pKdL+mb6+tslPbTBa+t/dK6UdLOk0yQ9QNJBkh4t6Xt1Zf6iwTpGJF2RLr8trcvRku4t6clKcsZv00yguLHBOo5J3zsk/V7SyyQdpqSl/hmSflpXh5PabM/taX1OknSIpDElI6zsSpd/WtIH0jq9TclJwb2UBMI/S8vcJOngHv6vx9fV41eS/ijpVZIOTz/Laknb6sqc0GAdB2vmJOVWSevS/+e9Ja1M/9+117+hzf90r31LMwHQlen92ZKWp9vggZI+Uvf6dzf4X+9ft/wl6eP627y07Mq6cp+XdJykQ9P96mhJz5T0CUnru9zGD1BykhWSvi1pVbqvjKaf/Snp//dfG7z2ken/PST9Id22D07rdD9JT5P0cUmfyeo463SbKemrtL9mgtILG5Tbd9a6v6CZ426DpIen/8dDJf2tpF+ny3+hWcHsrP3kt0r2tTcpOR4OlvQYSUd38X+p7Ve/Su/PTetzsKRjlRx3tff7dJN1NA2slaTD7U6XXyXpeZLum96er5mT2DskPabudU633Uvq1j97u96j39/53Lh1eyu8Aty4VemmzgLr19WVedYc3uvf0nV8qsGy+h/XOyQ9oUGZ/TQT6H2uwfL61sPnNXl9fWvYxgZlxjXT4vSQBstHNROQXiNpnxbb89eS7t1gHe+s+5x3Snp2gzIPSJeFpJf0sK2Pr6vHbkmPb1BmkWZOMi5rsPz96bI7Ja1qsHwfzVxZ2ClpUYv/6V77lmYCoJD0piaf4z9q27rJ8qYBUF2ZM9MyP1KDlvU57M+vTNf7u9n7QZvXWTMnTterQStuXdn5WR5nnW6ztNzGtNz5bcqdWLefPKNJmUM1c/Xm9S32k5D0lDn+X+r3q7OblPl4XZmHd7ONlFxBifTzHNpg+WGauRJxaYPlp9TWn9W+yI1bP2/kWAO9G7G9f3o7yPbDbb9X0nvS5WdFxJfmsP5Pp/cntCn3+Yj43uwnI+IWJS1jUjIU4GynpPc/iIjPNnn9umZvanuRklY/SfpIRPykwTqm6tZxiJKWxWb+b0Tc0OD5z6X38yRdHBFfbPA+/6MkEJSkR7V4j058ISIubPAe10l6V/rwz20vry2zPU8z23M8IjY3eP3tSlrBJWlfSS/osX6/kbS+ybJz0vtDbN+vx/XXcmmvjojocR2t1nt9ui069ReSavncb4iIK5oVjIg7eqhXp8dZVl6d3n8+Iv6jUYGI+K2STtBS0qrbzDci4usZ1WunpDc2WfaGdLkkndrpCtNj5KHpw3emn2sPEfFrSe9OHx5r+9hO1w+UEYE10LuvK0k9uEnJ5emtktYqubz7VxHxunYrsP0Y25+w/VMnnf7u9Exnvk1psfvaPqDFav5fi2Xb0vtDZr3vQUoui0vSl1u8/htKLjU38ljNfId8oUkZSfqakhZtSXp8i3J7BaOpKzsoU1/ukBZlOtFqe9Qvq++IuFTJBEFSi20REROaqWerbdHKtyJid5Nl2+r+7nU7TKT3f2X7tbb373E9zdb74LST4sEdvm5len+bktblrmV0nM2Z7XsoSdWQpO/WnZjvdZN0eVruIbb3abLKTU2e78X5EXFjowXp8xekD9t24K1T3wG61XdE/bJejwugFAisgeztJ+ks2y0DG9sbJP2npBcqCXIPUPNxjA9s8ryUpHs0UwuK7zHr+cPr3usXzV6cBnDNWggPr/v7Zy3WsatuHYc3K6cmnyMipuseXtPi9bVyIy3KdKLV9rhWSf61tOdn6WhbpH7a4DXd6OT/Le39P+/UuUpOEu+mZDz2G9IRMt5p+y9aBHktRcT5SlKHpKRl9He2v2/7H52McNJwFAwl+dCStC0idjYp01SGx1kWjlLSB0OSPqqZE/NGt9rVrrspyb9uZHuGdWu6389a3s1+Wys7FRFNj920JbvRcQVUDoE10LsnRoQjwpLuqaTDYC1weKCkz9qNh7qz/XwlOc5S0hL0N0p+9BdqZjbHp9a9pNVQV81aL1upb4W8uWmp1ssP6KBMzU0NXrOHFq2w9TopM9dJVjrdHvWfJdNt0Uan/++etkOaTvFEJbnt1yhJWzlOSQe5zUoC4rf3GGD/tZKrOtuVpPY8StLfS/qKpOtsf9B7DxdYe3yTupTxcZaFXgP3uzd5vtnVpF70st+3Uyvbbt29rh8oHQJrIAMRcVNE/EBJx6Tz0qefKOl/N3nJS9P7iyU9KSI+FxE/j4gbIuLmSGZ07KllsEP1P3TtLvU3W35TB2VmL+86OCpAL59loLZFug++RcnILEuVDLv4GSXDKo5Kequkf+9hvbsi4h8j4v5KRpT5WyUjjFyrpIX97yR9Z9aYyXM5ESn6OJut/rh7Su3EvIPbjhzq1o/9tla2k3Si0h8XQCcIrIEMpZ29XirpT+lTb7e9oEHRWoeeL0TEnU1WtzTr+tW5SklPeylpXW8o7ZR3TJPFO+r+flCTMkqDpNrEHTualSuRVtvjEM20Ol5Vt2hH3d9Nt0WqNmHOjlaFyiASl0fExyPiBUoC7Vrn0dW2HzaHdf8yIj4dES9WMmTeP6WLlmvPTq6/TO+X2G7WcttM0cfZbDuUjAYizaS4lEXT/X7W8qtaltrTjvR+1PZ9mxWyPaaZ42pHs3JAFRBYAxmLiOuVDFkmJUNjNWq13je9n9doHbbvpuSydV+knZFqucDPbFH0L9U8V/cSzQQJz2qxjqdqJu/5ok7rWKBW26N+RruL6/6+XDM5ok23he2HKhkLWipmW9RGzWi437UTEbdqZgQHaWa0jjlJ009Ob7Leb6X3+yqZaKQbWRxnnW6zXe3KRcQfJf1X+vA5bdaXt+NtjzZakHZ2Pi59eHGjMk3U7+OtviOe3eQ10sx2rZ3oA6VGYA30xweUzPgmSesa/CD8Kr1vNvzcacooaGlhY3r/KNvPm70w7UzWbFi32vBzX00fvtwNpoa2faBmhh+8VskIIWV3khtM5257oaQ3pw8vj4ittWVpfvjG9OGJtvcaui29clFrld2pmWHe8vT79H5xswK2l7RZR31L6++bltp7vcekgWy36/22Zk4C32u7aUtvg2m3szjO2m6zLsvVTrofZ7vlyEG259k+ulWZDN1d0nubLHuPZvK8z2lSZi8RcamkH6cP32x7r21j+1Al+fuS9KOI+NGsIvX7QrttCxSOwBrog7Rl6qz04THau3Xq8+n9E22fa3uZ7YNtH2v740o6jv28z9X8sGYus59j+y2275/W48lKpnR+gKTJFutYq2SWyRElw4etsX0/2wttP11J61MtUHt1l+MXF+XXkjbZfmXdZ1mt5LOMpWVe2+B171DS2c+Sxm2/wfZR6fZ8kqTvSHpCWvZt6ZWNvF2a3p+cDkG3v+356a3W2fFjti+3/Wbbx9lenI7TvsT2K5VMFiIlo5PsNX56C2+SdKXtM2w/Od22o+k+d6pm+ibcopkTtlp61alKZkdcKOm/0m37Z+nrD7X9V7Y/IulfZ71nFsdZJ9usvtxRtl9he1Fdubt+a9Nx2Gtjs59p+8u2n5Ju51Hbh9v+S9vvUdLJ8zVt6peVHZJebPvT6fa5V7q9PiXpxWmZc9NguRt/p+TK1n0kXWz7ubYPsX3f9IT+YiX/191p2dkmNHNl7O3p9tkn3a60YKN88pyNhhu3qt/UwcyLdWXvqWR861CSKuC6Zfsp+SGOJreLlEzxXHt8xKx1H9FJPdRm1jIlQe/VTeqwW8l0wuerycyL6TqeqKRTW7PPcoek1/RSv7pyncwYuFEdzHzX5LXH173HkzQzw+Ls252SXtViPUtbvLZ2+8f6faHT/6lmZsg7vcX7t1vHqhb1Oj4tc36LMrXbDaqbfrrDbbyxg/XeKml1k9efoJnjqdltfNZr5nScdbrN0nIjmplufvZt46x17qNkuL122yMkva+XY7+L/8td+5WSDqrN6nGBZk2v3unxqSTdZmeLdU9LOqlFHT/b5HU75vr5uXHL+kaLNdAnEfEnJeMAS0mHtWfWLbtFSevlOyX9j5LWuBuV5F++Rkmgl+VQWs3quE1JMPg+Ja1jtyuZevirSkZR+FgH6/iukpbtMyT9RMnIBzvT9f2LpIdFxPv78gH6Y7ukY5Wk81ypZGKSG5RMF/74iPinZi+MiMuUpBa8SdIPleRd365ktsR/k/S4iHh9RERfP0Hz+m1Wkjf/DSXTSDeaqfBkJS2Un1Mypf0NSk6ypiT9QNLbJC2JiEu6fPs3KulvsFHJNNe/S9//JiWtkhskPTAixhu9OCK+rSRd5K1KjpMbNbNtL1KS1vHqWa+Z83HW4TZTJOOtP15JwPxLzcxU2Kjs7RHxUkkPl/QxJa3mN6Xr/oOSfeeDSoL61zdbTx+8QMn//vtK9t1blfxvXiNpZbo9uxYR/6bkuPigkkmMbk1v25SkRz0wIlpNIHOqkjSs/1by/VLI8QN0wgV9vwNAadg+XtJ304dHRj7DmwGFs71DyaQsb4+I04utDVB9tFgDAAAAGSCwBgAAADJAYA0AAABkgMAaAAAAyACBNQAAAJCBSo8Kcu973zuOOOKIoqsBAACAAXbppZfeEBEL25WbPf1rpRxxxBHaunVr+4IAAABAj2xf1Uk5UkEAAACADBBYAwAAABkgsAYAAAAyQGANAAAAZIDAGgAAAMgAgTUAAACQAQJrAAAAIAME1gAAAEAGCKwBAACADFR65kUAAIBBNj4xqQ2bt+nqqWktHh3R2lVLtHrZWNHVQhME1gAAACU0PjGp0867TNO7dkuSJqemddp5l0kSwXVJkQoCAABQQhs2b7srqK6Z3rVbGzZvK6hGaIfAGgAGyPbt27V9+/aiqwEgA1dPTXf1PIpHYA0AAFBCi0dHunoexSOwBgAAKKG1q5ZoZMG8PZ4bWTBPa1ctKahGaIfOiwAAACVU66DIqCDVkXtgbfuVkh4vaamkRZLuKWlK0o8lbZT0mYiIvOsFAABQNquXjRFIV0gRLdZvVBJQXy7pPyXdIulwSU+StFLSs22fGBF3FlA3AAAAoCdFBNbPlTQREbfUP2n7wZK+I+l/STpZ0jkF1A0AAADoSe6dFyPiotlBdfr8TyV9OH345HxrBQAAAMxN2UYFuSO9v63QWgAAAABdKk1gbftISS9NH/5HkXUBAAAAulXYcHu2T5V0nKQFkg6V9Fglgf67I+LLRdULAAAA6EWR41ivUNJJseYOSW+R9L5WL7K9RtIaSTrssMP6VjkAAACgG4WlgkTEiyLCku4h6cGS3i/pdEnft724xevOjojlEbF84cKF+VQWAAAAaKPwHOuImI6In0XEWkmnSXqopA8VXC0AAACgK4UH1rNsTO+fbntBkRUBAAAAulG2wPpGJbnW8yXdq+C6AAAAAB0rW2D9BCVB9ZSkGwquCwAAANCxXANr24+z/TTbe41GYnuFpH9JH/5LROzOs24AAADAXOQ93N7Rks6RNGX7R5KulXSApPtLelBaZpOSYfcAAACAysg7sL5A0jskPV7SMUomhbGSAPtLks6NiPGc6wQAAADMWa6BdUT8StJb83xPAAAAIA9l67wIAAAAVBKBNQAAAJABAmsAAAAgAwTWAAAAQAYIrAEAAIAMEFgDAAAAGSCwBgAAADJAYA0AAABkgMAaAAAAyACBNQAAAJABAmsAAAAgAwTWAAAAQAYIrAEAAIAMEFgDAAAAGSCwBgAAADJAYA0AAABkgMAaAAAAyACBNQAAAJABAmsAAAAgAwTWAAAAQAYIrAEAAIAMEFgDAAAAGSCwBgAAADJAYA0AAABkgMAaAAAAyACBNQAAAJABAmsAAAAgA/OLrgAAAOjc+MSkNmzepqunprV4dERrVy3R6mVjRVcLgAisAQCojPGJSZ123mWa3rVbkjQ5Na3TzrtMkgiugRIgFQQAgIrYsHnbXUF1zfSu3dqweVtBNQJQj8AaAICKuHpquqvnAeSLwBoAgIpYPDrS1fMA8kVgDQBARaxdtUQjC+bt8dzIgnlau2pJQTUCUI/OiwAAVEStgyKjggDlRGANAECFrF42RiANlBSpIAAAAEAGCKwBAACADOQaWNteYHul7TNtb7X9J9u32560/UXbx+dZHwAAACAreedYHyfpW+nf10r6nqRbJD1I0rMkPcv2OyLirTnXCwAAAJiTvAPrOyV9SdIHIuLC+gW2nyPpM5LeYvu7EfHdnOuGkhmfmKTnOwAAqIxcU0EiYktEPHt2UJ0u+3dJG9OHL8izXiif8YlJnXbeZZqcmlZImpya1mnnXabxicmiqwYAANBQ2TovTqT3hxZaCxRuw+Ztmt61e4/npnft1obN2wqqEQAAQGtlC6yPSe+vKbQWKNzVU9NdPQ8AAFC00gTWtg+RdEr68EsFVgUlsHh0pKvnAQAAilaKwNr2fEnnSjpQ0nci4qstyq5Jh+rbev311+dWR+Rr7aolGlkwb4/nRhbM09pVSwqqEQBU1/jEpFas36Ij123SivVb6K8C9EkpAmtJH5W0UtJv1KbjYkScHRHLI2L5woULc6kc8rd62ZjOOHGpxkZHZEljoyM648SljAoCAF2iMziQn7yH29uL7Q9IeqGSca1XRsS1BVcJJbF62RiBNADMUavO4HzHAtkqtMXa9pmSXiXpeiVB9RVF1gcAgEFDZ3AgP4UF1rbfK+l1kn4v6YSI+FlRdQEAYFDRGRzITyGBte31ktZKulHSkyPiJ0XUAwCAQUdncCA/uedY236npDdKmlISVE+0eQkAAOhRLY96w+ZtunpqWotHR7R21RLyq4E+yDWwtv0MSW9KH/5S0ittNyr6i4hYn1vFAAAYYHQGB/KRd4v1ver+Xp7eGrlAEoE1AAAAKiPXwDoiNkramOd7AgAAAHkoywQxAAAAQKURWAMAAAAZILAGAAAAMkBgDQAAAGSAwBoAAADIAIE1AAAAkIHcZ15Eb8YnJpk1CwAAoMQIrCtgfGJSp513maZ37ZYkTU5N67TzLpMkgmsAAICSILCugA2bt90VVNdM79qtDZu3EVgDAArBlVRgbwTWFXD11HRXzwNojmAAVVLW/ZUrqUBjdF6sgMWjI109D6CxWjAwOTWt0EwwMD4xWXTVgL2UeX9tdSUVGGYE1hWwdtUSjSyYt8dzIwvmae2qJQXVCKgmggFUSZn3V66kAo0RWFfA6mVjOuPEpRobHZEljY2O6IwTl3K5DegSwQCqpMz7K1dSgcbIsa6I1cvGCKQx9Oaab7p4dESTDYISggGUUZn317WrluyRYy1xJRWQaLEGUBFZ5JuSVpWv8YlJrVi/RUeu26QV67eUIje4Ssq8vw7DlVT2X/SCFmugQGXt8V9GWQw7WSvHNu8/Ro2Yu7Lvr4N8JZX9F70isAYKwhd3d7LKNx3kYKBMGH8/G+yvxWD/Ra9IBQEKUuYe/2VEZ6lqKXPHO6Ad9l/0isAaKAhf3N0pc74p9saJEKqM/Re9IrAGCsIXd3eGobPUIOFECFXG/otekWMNFIThqrpHvml1lL3jHdAK+y96RWANFIQvbgw6ToRQZey/6AWBNVAgvrhRRQwTCQCNEVgDADrGMJEA0BydFwEAHWOYSABojsAaANAxhokEgOYIrAEAHWOYSABojsAaANAxxvcFgObovAgAQ2SuI3owTCQANEdgDQBDIqsRPRgmEgAaIxUEAIYEI3oAQH/RYg0AQ4IRPbLBBDkAmqHFGgCGBCN6zF0tnWZyalqhmXSa8YnJoqsGoAQIrAFgSDCix9yRTgOgFVJBAGBIFDWixyClTpBOg2ExSMdtngisAWCI5D2iR1YjkZTF4tERTTYIokmnwSAZtOM2T6SCAAD6ZtBSJ0inwTAYtOM2T7m3WNteIukvJT1C0nJJD5BkSSdFxBfzrg8AoH8GLXWCCXIwDAbtuM1TEakgL5P06gLeFwCQs0FMnWCCHAy6QTxu81JEKsjlkjZIeo6koyVdUEAdAAA5IHUCKI/xiUmtWL9FR67bpBXrtzQdJpLjtne5t1hHxCfqH9vOuwoAgJyQOgGUQzcdEjlue8eoIACAvuomdYIhvoD+aNUhsdExRspTbwisAQClwBBfQP/QITEfDLcHACgFhvgC+qdZx0M6JGarcoG17TW2t9reev311xddHQBARmhRA/qHDon5qFwqSEScLelsSVq+fHkUXB0AQEbmMsQXudlAa3RIzEflAmsAwGBau2rJHjnWUmctauRmA52hQ2L/VS4VBAAwmFYvG9MZJy7V2OiILGlsdERnnLi0bSBAbjaAsqDFGgBQGr20qJGbDaAsCKwBAH3V7/xnpl8GUBakggAA+qaW/zw5Na3QTP5zs6mUe8FoB5A6n64b6KfcA2vbx9r+fu0m6dh00btnPQ8AqLg88p9n52YfdI8F2nf+3fTaf/9vAqwhkccJHNCJIlJB7inpUQ2ePybvigBALxjarXOd5j/PdZvWcrMZIWQ4dTtdN9AvuQfWEXG+JOf9vsAwIgDMHoFbdzrJf85ymxJgDaciO7DyPYt65FgDA4pLo/0xl9SGYcwB7ST/Oct0EUYIGU5FTdfN9yxmI7AGBhRj+/ZHswBtcmq6ZbA8rD/A9fnPkjTPvms/rH32LIPhogIsFKuoDqx8z2I2AmtgQNFy1x+tArRWwfIw/wCvXjZ2V+CzO0LSntsqy2CYEUKGU6+TC80V37OYjXGsgQprlds3l7F9yRlsrtG02/Wa5fMO+w9wqxOLXqcyb6S23dl/h08R03UzhjpmI7AGKqpdh69egxU657VWH7g1+kGVGgfLw/4D3OrEIutguIgAC8Mpy5NCDAYCa6Ci2o1+0GuwwqgK7dW274r1WzoOlof9B7jdiQXBMKqIKySYjcAaqKhOUgt6CVaGPWWhG90Ey8P+AzzsJxYYXJwUoh6BNVBR/UotGPaUhW50Gyy3+gEe9Lz2YT+xADAcCKyBiupXC2BZWharEmhm0Vo1LHnttOwBGHQMtwdUVL+Glypq2Kp6wzbm8zAPxQcAg4QWa6DC+tUCWHTL4rB1oCSvHQAGA4E1gNIZtkCTvHa0UpW0KACkggAooWGblprZAtHMsKVFAVVHYA2gdIYt0CxDXjvKifx7oFpIBQFQOsM4NFvRee0op2FLiwKqjsAaQCkRaALk3wNVQyoIAAAlNWxpUUDV0WINlAC9/gE0MoxpUUCVEVgDBRuWWffKipMalB1pUUB1kAoCFIxe/8VhKDMAQJYIrIGC0eu/OJzUAACyRCoIUDB6/ReHk5ps1NJpJqemNc/W7giNkVYDYAjRYg0UjF7/xRm2GR77oT6dRpJ2R0girQbAcCKwBgrGrHvF4aRm7hql09SQVgNg2JAKApQAvf6LwVBmc9cubaZfaTWM5gKgjAisAQw1TmrmplkfgfrlWWOISgBlRSoIAKBnjdJpavqVVsNoLgDKihZrAEDP6tNp8hoVhNFcAJQVgTUAYE7yTqdhiMrukI8O5IdUEABAKY1PTGrF+i06ct0mrVi/5a6h+xjNpXPMLgrkixZrAEDpdNJBkVbY9lrlo7O9gOwRWANAj7jE3j/tAkJGc+kM+eiIUC3dAAAVsUlEQVRAvgisAfRk2INKhnzrLwLCbJCPDuSLHGsAXSNvkyHf+o3p5rNBPjoGRbM+F2VDi/UAGPaWQ+SPvM3WLaock3O3dtWSPa4ISASEvSAfHYOgSlcICawrrtudjR98ZCHry/RV3C+bXWI/cGRBZX4AyoyAMDvko6PqqtSYQ2Bdcd3sbFU640O5ZZm3WdX9slmLqq3K/ACUXb8Dwiqe0AHDqEp9LgrLsbb9PNsX2v6j7Zttb7X9CtvkfXehm52NnFBkJcu8zarul6uXjemME5dqbHREljQ2OqIzTlyqqVt3NSxfxh+AYUY/AaA6qtTnopAWa9sflvRySTslfUfSLkkrJX1I0krbz46IO4uoW9V003JYpTM+lFuWl+mrvF82alGtTe09Wxl/AIZZlS4tA8OuSn0ucg+sbT9LSVB9raQnRMQV6fP3kfRdSc+U9EpJH8i7blXUzc7GsEvIUlaX6Qdtv6zSD8Ag6Tato8ondMCwqVKfiyJarE9L799YC6olKSJ+Z/tlks6XtM72B2m1bq+bnY0ffJTRoO2XVfoBGBS95OkP2gldFZHjjm5UpROuIyK/N7MPlfQbSbdLGo2Ivb7VbP9W0pikFRHxn63Wt3z58ti6dWtf6jqo+CJDGbFfZmf79u2SpKOOOqrgmuRnxfotDYPksdERXbzuSQ1fMzsYl5ITujNOXMq+lwO2P6rG9qURsbxdubxbrJel9z9tFFSnfqgksF4mqWVgje5V5YyvhoBrOFRtv0S59JLWwZWFYs01x53fBpRV3oH1ken9VS3K/HpWWQypqg7DBiBfvaZ1cEJXnLnkuPPbgDLLO7DeP72/pUWZm9P7A/pcl57VLrWiv9696YqGLRrv3nS5HnLgbQXVCii3nTt3Shqu76mTlx2kMy/cqdvumElt3He+dfKyg4ZqO1TJwv3n67qb72j4fLv/Gb8Nw63saW6VmyDG9hpJayTpsMMOK7g26KfrG3zptnoewHA64ZgDJUmf+OF1uv7mO7Rw//l60SMW3fV81Xz7ij8OzGdp5kWPWKQzL7xmr5OhFz1iUdvX8tuAMss7sK61Ru/XokytVfumRgsj4mxJZ0tJ58Xsqta5sp8tDYrFozuaXt7lfzBcyKfs3DB2XpSkNUdJa1YVXYu5G5+Y1FkX/e6uFtnrbr5DZ130Oy1atGig9vk1R0mLFi3q6bjmtwFllndgvSO9P7xFmfvNKoshNWjDsKE35FNimAzTxDW95rjz24Ayy3v68In0/sG2m/UqecSsshhSzaaMHrQfF7RW1SnPgV4wcU17/DagzHJtsY6I39j+kaRjJZ0k6VP1y20fJ+lQJbMyXpJn3VBO9NoHgQaGCRPXdGb2cIm1E21+L1C0vFusJemM9P49to+uPWl7kaR/Th+uZ9ZFAFLzgGKugcb4xKRWrN+iI9dt0or1WzQ+MTmn9QFZWLtqiUYWzNvjOdIc9lZLEZucmlZoJkWM4xhFyz2wjogvSvqIpEMkXWb7q7bPk3SFpAdJGpf0obzrBaCc+hFo8KOMsiLNoTOkiKGsChluLyJebvsiSa+QdJykeZJ+IemTkj5CazWAmn7MkDdMHcRQPaTAtUeKGMqqsHGsI+Kzkj5b1PsPMoYmw6DJOtDgRxmoNnLRUVZF5Fijj7jEDbTXr7xtAPkgFx1lRWA9YMg7A9rjRxmoNnLRUVaVm9IcrXGJG2ivH3nbRapP/6pNgb2GCegw4MhFRxkRWA8Y8s6AzgzKj/LsmSmvu/kOnXnhNQM3BTYAVAGpIAOGS9zAcGmU/nXbHUH6FwAUgBbrATNol7gBtEb6FwCUB4H1ABqUS9wA2hvE9C+GDAVQVQTWAHqWdQBEQNW9tauW7JFjLUn7zndl079m54zXhgyVxL4AoPTIsQbQk6zHTGcM9t7MHnZs0f7z9fePv29lg1CGDAVQZbRYA+hJ1tOCM8147+rTv7Zv315wbeaGnHEAVUaLNYCeZB0AEVBBYlZMANVGYA2gJ1kHQARUkBgyFEC1EVgD6EnWARABFSSmqgZQbeRYA+hJ1mOmMwY7ahgyFEBVEVgD6FnWARABFQDMDcOWFovAGgAAYAAwDnzxCKwBDARaaQAMO4YtLR6BNUqJIKlYVdv+tNIAAMOWlgGBNUqHIKlYVdz+tNKg6qp2MotyWjw6oskGQTTDluaH4fZQOkxpXKwqbn9aaVBltZPZyalphWZOZscnJouuGiqGYUuLR2CN0iFIKlYVtz+Ty1TD+MSkVqzfoiPXbdKK9VsIHFNVPJlFOTEOfPFIBUHpcCmrWFXc/mtXLdkjfUWilaZsqphilLVm6R5VPJlFeTFsabFosUbpcCmrWFXc/rTSlN+wt8q2SvfgigswOGix7gKdS/LBDHzFqur2p5Wm3Ia9VbbViQVXXIDBQWDdIS5j5osgqVhsf2StiilGWWp1YlHVk1kAeyOw7hDDeaHfuCKCuajffxbuP1//8NR9S7X/DHurbLsTC05mgcFAjnWHhv0yJvqL4bYwF7P3n+tuvqN0+8+w58FXse8CgO7RYt2hYb+Mif7iigjmoir7zzC3ypLuAQwHAusODftlTPQXV0T6Y1jSa9h/qmGYTyyAYUFg3SFaG9BPXBHJXtEdjvMM6tl/AKAcCKy7QGsD+oUrItkrMj0i76Ce/QcAyoHOi0AJDHvHrn4oMj0i78lQZu8/i/afz/4DAAWgxRooCa6IZKvI9Igigvra/rN9+3ZJ0lFHsS8BQN5osQYwkIoc3owpqgFgOBFYAxhIRabXMGYxAAwnUkGQuWEZ4gzlV1R6DaMIAcBwIrBGpooe4gwoC3LmAWD45JoKYns/28+3/X7bF9u+xXbY/lqe9UD/5D0aAhLjE5NasX6Ljly3SSvWbynVVNYAAAyLvFusj5F0bs7viRwxA1z+uEoAAEA55N158SZJn5T0ckmPkvTSnN8ffcZoCPnr9CoBrdoAAPRXroF1RFwZES+MiI9ExH9Jui3P90f/MRpC/jq5SlBr1Z6cmlZoplWb4BoAgOww3B4yxQyC+evkKgG57wAA9B+jgiBzjIaQr7WrluyRYy3tfZWA3HcAyA7DyqIZAmug4joZM7nI6b2BThGsoAroMI5WCKxROfz47q3dVYJOWrWBIhGsoCpapdaxr6LjwNr2eyU9o4f3WBkRmfWQsr1G0hpJOuyww7JaLSqCH9/eFDUTICdB6BTBCqqC1Dq00k2L9WJJvTRvLejhNU1FxNmSzpak5cuXR5brRvnx49u7vHPfOQkql7Kf5BCsoCo6Ta0r+zGH/uh4VJCIeEFEuIfbjj7WH0OGH9/qYCSS8qjCcIuMgY+q6GRY2Socc+gPhttDpfDjWx2cBJVHFU5yGAMfVdHJsLJVOObQH3ReRKXQCa86GImkPKpwklNUPwAMjjxTL9ql1lXhmEN/EFijUvjxrQ5OgsqjKic5jIGPXpWtT0dVjjlkL/fA2vaXJd03fbgwvV9h+/t1xd4REZvyrRmqgh/fauAkqDw4ycGgK1vHdo654VVEi/UySYfPem5U0qPqHi8UgMrjJKgcOMnBoCtb6gXH3PDKPbCOiCPyfk8AGHac5GCQlTH1ogrHHEMCZo9RQQAAQKUxqkz3GBKwP+i8CAA56KRliNYjoDekXnSvbHnpg4LAGgD6rJMRC8o2qgFQNVVIvSiTsuWlDwpSQQCgzzqZLIIJJQDkiQnX+oPAGgD6rJOWIVqPAOSJvPT+ILAuufGJSa1Yv0VHrtukFeu30KkAqKBOWoaalQmJYx9A5jqZmh3dI8e6xMi5BAZDJ5NFNCpTw7EPoB/IS88eLdYlRs4lMBg6aRmqL9MIxz4AlB8t1iVGziXmgqHbyqWTlqFamSPXbVI0WM6xDwDlRot1idFjF71i4P9q49gHgGoisC4xeuyiV6QRVRvHPgBUE6kgJcZMUugVaUTVxrEPANVEYF1y9Nidm2HNM148OqLJBkE0qQTVwbEPANVDKggG1jDnGZNKAABA/gisMbCGOc+Ygf8BAMgfqSAYWMOeZ0wqAQAA+aLFGgOLIcsAAECeCKwxsMgzBgAAeSIVBAOLIcsAAECeCKwx0MgzBgAAeSGwBgBkZljHjgcAicAaAJCR2tjxtWEua2PHSyK4BjAU6LwIAMjEMI8dDwASgTUAICPDPnY8AJAKgoFCfmcx2O6QkjHiJxsE0YwdD2BY0GKNgVHL75ycmlZoJr9zfGKy6KoNNLY7ahg7HsCwI7DGwCC/sxhsd9SsXjamM05cqrHREVnS2OiIzjhxKVcvAAwNUkFQat2kGJDfWQy2O+rlNXY86UcAyogWa5RWtykGzfI4ye/sL7Y78kb6EYCyIrBGaXWbYkB+ZzGquN3HJya1Yv0WHbluk1as30JAVjGkHwEoK1JBUFrdphjULgNzeThfVdvuTGJSfaQfASgrAmuUVi9Dd+WV34k9VWm7t2rtrMpnGHYM6wegrEgFQWlVMcVgEAx6mgStndXHdwOAsqLFGqVVtRSDQTAMaRK0dlYf3w0AyorAGqVWpRSDQTAMaRJrVy3Z4+RBorWzivhuAFBGBNYA7jIMaRK0dgIA+oXAGsBdhiVNgtZOAEA/5Np50fYS26+1/Q3b19jeZfuPti+x/Rrb++ZZHwB7olMYAAC9y7vF+juSxiTtlLRV0vmS7iPpMZIeLelvbZ8QEX/IuV4ARJoEAABzkXdgvU3SWyV9PiJurj1p+whJX5O0TNJZkk7OuV4AUqRJAADQm1xTQSJiZUR8sj6oTp/fIeml6cO/tr1PnvUCAAAA5qpME8RMpPd3l3RwkRUBAAAAulWmwPqY9P52SeRYAwAAoFLKFFivS++/FhG3FVoTAAAAoEulCKxtnyLpOZJulfQPxdYGAAAA6F7Ho4LYfq+kZ/TwHisjYrLFeldK+pikkPSSiNjWph5rJK2RpMMOO6yH6gAAAADZ62a4vcWSepklYkGzBbYfJ+krkvaR9KqIOLfdyiLibElnS9Ly5cujh/oAAAAAmes4FSQiXhAR7uG2o9H6bD9W0tcl7SfpDRHxwWw+EgAAAJC/QnKsbT9a0jckHSDpzRGxoYh6AAAAAFnJPbC2/UhJm5UE1adHxLvyrgMAAACQtVwDa9vLJX1T0j0lvSMi3p7n+wMAAAD90k3nxSx8U9KBkqYkHWZ7Y5Nyr4+IG3KrFQAAADBHeQfWB6X3o5JOblHudEkE1gAAAKiMXAPriHCe7wcAAADkpRQzLwIAAABVR2ANAAAAZIDAGgAAAMhA3p0XAQDYy/jEpDZs3qarp6a1eHREa1ct0eplY0VXCwC6QmANACjU+MSkTjvvMk3v2i1Jmpya1mnnXSZJBNcAKoVUEABAoTZs3nZXUF0zvWu3NmzeVlCNAKA3tFgDwAA56qijiq5C166emu7qeQAoK1qsAQCFWjw60tXzAFBWBNYAgEKtXbVEIwvm7fHcyIJ5WrtqSUE1AoDekAoCAChUrYMio4IAqDoCawBA4VYvGyOQBlB5pIIAAAAAGSCwBgAAADJAYA0AAABkgMAaAAAAyACBNQAAAJABAmsAAAAgAwTWAAAAQAYIrAEAAIAMEFgDAAAAGSCwBgAAADLgiCi6Dj2zfb2kq4quR0buLemGoiuB0mM/QSfYT9AO+wg6wX4y4/CIWNiuUKUD60Fie2tELC+6Hig39hN0gv0E7bCPoBPsJ90jFQQAAADIAIE1AAAAkAEC6/I4u+gKoBLYT9AJ9hO0wz6CTrCfdIkcawAAACADtFgDAAAAGSCwLinbS2y/1vY3bF9je5ftP9q+xPZrbO9bdB1RLNv72X6+7ffbvtj2LbbD9teKrhvyZ/t5ti9Mvydutr3V9its8z2P2m/Kq22fa/sXtu9Mvy+eXXTdUA62F9heafvM9PvjT7Zvtz1p+4u2jy+6jlVAKkhJ2f6tpDFJOyVtlfRbSfeR9BhJd5c0IemEiPhDYZVEoWw/TMl+MNumiHha3vVBcWx/WNLLlXxffEfSLkkrJR0g6cuSnh0RdxZXQxTN9vslvbrBopMi4ot51wflY/sESd9KH14r6VJJt0h6kKQ/T59/R0S8tYDqVQYtGeW1TdILJS2MiMdHxN9ExJMk/Zmkn0paJumsIiuIwt0k6ZNKAqpHSXppsdVBEWw/S8k+cK2kh0TE0yLimZKOkfRzSc+U9MoCq4hyuFzSBknPkXS0pAuKrQ5K6E5JX5L0hIi4b/pd8pyIWCrpuZJ2S3qL7ScWWsuSo8W6gmw/TtKFSlqnDoyI2wuuEkrA9imSzhEt1kPF9lZJD5d0ckR8atay4ySdryToHqPVGjW2z5d0nGixRodsf0JJg98nI+KFRdenrGixrqba5f+7Szq4yIoAKI7tQ5UE1bdL+sLs5RFxgaRJSYdIenS+tQMwYGqxx6GF1qLkCKyr6Zj0/nZJ5FgDw2tZev/TiJhuUuaHs8oCQC9qscc1hdai5Aisq2ldev+1iLit0JoAKNKR6f1VLcr8elZZAOiK7UMknZI+/FKBVSk9AuuKSfNonyPpVkn/UGxtABRs//T+lhZlbk7vD+hzXQAMINvzJZ0r6UBJ34mIrxZcpVKbX3QFBpHt90p6Rg8vXRkRky3Wu1LSxySFpJdExLYeq4iC9WsfAQAgYx9VMnznbyS9oOC6lB6BdX8slrSkh9ctaLYgHQnkK5L2kfSqiDi3x7qhHDLfRzCUaq3R+7UoU2vVvqnPdQEwYGx/QMlIINcqadi5tuAqlR6pIH0QES+ICPdw29FofbYfK+nrSn483xARH8zz8yB7We8jGFo70vvDW5S536yyANCW7TMlvUrS9UqC6isKrlIlEFiXnO1HS/qGkvzIN0fEhoKrBKA8asNfPdj2SJMyj5hVFgBaStMVXyfp90pmef5ZwVWqDALrErP9SEmblQTVp0fEuwquEoASiYjfSPqRkhSxk2YvTyeIOVTJZdxL8q0dgCqyvV7SWkk3SnpyRPyk4CpVCoF1SdleLumbku4p6R0R8faCqwSgnM5I799j++jak7YXSfrn9OF6Zl0E0I7td0p6o6QpJUE1V7q6xJTmJWX7D5IOUrJzf6VF0ddHxA351AplY/vLku6bPlwo6Sgl+0z9iDHviIhNedcN+bH9z5JeJmmnpG9L2qWkF/89JY1LenZE7C6uhiia7WM1c6IlSQ9ScjX0CtVNNBYRzNA5pGw/QzPxxlZJP21S9BcRsT6fWlUPgXVJ2e70H3MkHdqGl+0dat1xTZJOjYiN/a8NimT7eZJeIWmppHmSfiHpk5I+Qms1bB8v6bvtykWE+18blFE6T8Y5HRS9ICKO729tqovAGgAAAMgAOdYAAABABgisAQAAgAwQWAMAAAAZILAGAAAAMkBgDQAAAGSAwBoAAADIAIE1AAAAkAECawAAACADBNYAAABABgisAQAAgAz8f6oLpfk0USWWAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 864x432 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plt.figure(figsize=(12,6))\n",
"_ = plt.plot(data_x, data_y, 'o')\n",
"_ = plt.title(\"Random points scatter plot\")\n",
"_ = plt.hlines(0, min(data_x+[0]), max(data_x+[0]), color=\"lightgray\")\n",
"_ = plt.vlines(0, min(data_y), max(data_y), color=\"lightgray\")"
]
},
{
"cell_type": "markdown",
"id": "66073398",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"# Thank you!\n",
"\n",
"π Read more about Mercury:\n",
"\n",
"- Website https://mljar.com/mercury/\n",
"- GitHub https://github.com/mljar/mercury\n",
"- Email contact@mljar.comm\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "330dc133",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"celltoolbar": "Slideshow",
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.5"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|