from summarizer import Summarizer bert_model = Summarizer() # text = """One month after the United States began what has become a troubled rollout of a national COVID vaccination campaign, the effort is finally gathering real steam. # Close to a million doses -- over 951,000, to be more exact -- made their way into the arms of Americans in the past 24 hours, the U.S. Centers for Disease Control and Prevention reported Wednesday. That's the largest number of shots given in one day since the rollout began and a big jump from the previous day, when just under 340,000 doses were given, CBS News reported. # That number is likely to jump quickly after the federal government on Tuesday gave states the OK to vaccinate anyone over 65 and said it would release all the doses of vaccine it has available for distribution. Meanwhile, a number of states have now opened mass vaccination sites in an effort to get larger numbers of people inoculated, CBS News reported.""" def abstractive_text(text): summary_text = bert_model(text, ratio=0.1) return summary_text import gradio as gr sum_iface = gr.Interface(fn=abstractive_text, inputs= ["text"],outputs=["text"],title="Case Summary Generation").queue() import transformers from transformers import BloomForCausalLM from transformers import BloomTokenizerFast import torch from transformers import AutoTokenizer, AutoModelForCausalLM import gradio as gr tokenizer = AutoTokenizer.from_pretrained("bigscience/bloom-560m") model = AutoModelForCausalLM.from_pretrained("bigscience/bloom-560m") def get_result_with_bloom(text): result_length = 200 inputs1 = tokenizer(text, return_tensors="pt") output1 = tokenizer.decode(model.generate(inputs1["input_ids"], max_length=result_length, num_beams=2, no_repeat_ngram_size=2, early_stopping=True )[0]) return output1 txtgen_iface = gr.Interface(fn=get_result_with_bloom,inputs = "text",outputs=["text"],title="Text Generation").queue() import spacy.cli import en_core_med7_lg import spacy import gradio as gr spacy.cli.download("en_core_web_lg") med7 = en_core_med7_lg.load() # create distinct colours for labels col_dict = {} seven_colours = ['#e6194B', '#3cb44b', '#ffe119', '#ffd8b1', '#f58231', '#f032e6', '#42d4f4'] for label, colour in zip(med7.pipe_labels['ner'], seven_colours): col_dict[label] = colour options = {'ents': med7.pipe_labels['ner'], 'colors':col_dict} #text = 'A patient was prescribed Magnesium hydroxide 400mg/5ml suspension PO of total 30ml bid for the next 5 days.' def ner_drugs(text): doc = med7(text) spacy.displacy.render(doc, style='ent', jupyter=True, options=options) return [(ent.text, ent.label_) for ent in doc.ents] med_iface = gr.Interface(fn=ner_drugs,inputs = "text",outputs=["text"],title="Drugs Named Entity Recognition").queue() from diffusers import StableDiffusionPipeline #pip install accelerate #pip install --user #pip install --user torch==1.7.0+cu110 torchvision==0.8.1+cu110 torchaudio===0.7.0 -f https://download.pytorch.org/whl/torch_stable.html pipe = StableDiffusionPipeline.from_pretrained('CompVis/stable-diffusion-v1-4') # Initialize a prompt def stable_image(text): prompt = text # Pass the prompt in the pipeline return pipe(prompt).images[0] import gradio as gr stable_iface = gr.Interface(fn=stable_image, inputs= "text",outputs=["image"],title="Text to Image").queue() demo = gr.TabbedInterface( [txtgen_iface, sum_iface, med_iface,stable_iface], ["Text Generation", "Summary Generation", "Drug Named-entity Recognition","Text to Image"], title="United We Care", ) demo.queue() demo.launch(share=False)