File size: 4,540 Bytes
2869f1d
 
 
1a8e5ac
 
 
 
 
 
 
 
 
 
 
2869f1d
 
 
 
 
1a8e5ac
2869f1d
1a8e5ac
 
 
 
 
 
 
 
2869f1d
 
 
 
1a8e5ac
2869f1d
 
 
 
 
 
 
 
1a8e5ac
2869f1d
1a8e5ac
 
2869f1d
1a8e5ac
2869f1d
 
1a8e5ac
2869f1d
1a8e5ac
 
2869f1d
1a8e5ac
2869f1d
 
 
 
 
 
 
 
1a8e5ac
2869f1d
1a8e5ac
2869f1d
 
 
 
 
 
 
 
1a8e5ac
 
 
 
 
 
 
 
2869f1d
1a8e5ac
 
 
2869f1d
1a8e5ac
 
 
 
2869f1d
1a8e5ac
 
 
 
 
 
 
2869f1d
1a8e5ac
 
 
 
 
 
 
2869f1d
 
 
 
 
 
 
 
 
 
 
 
 
 
1a8e5ac
2869f1d
 
1a8e5ac
2869f1d
1a8e5ac
 
 
2869f1d
 
 
 
 
 
 
 
1a8e5ac
2869f1d
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, GenerationConfig
from dataclasses import dataclass
from typing import List, Optional
from utils import (
    get_preprocess_function,
    get_utterance_processing_functions,
    byt5_decode_batch,
    consistent,
)
from utils import (
    PROGRAM_SPECIAL_TOKEN,
    UTTERANCES_SPECIAL_TOKEN,
    GT_PROGRAM_SPECIAL_TOKEN,
)
from greenery import parse
from greenery.parse import NoMatch
import numpy as np
import torch


class Agent:
    def __init__(
        self,
        model_path: str,
        gen_config: dict,
        inference_batch_size: int = 1,
        device=None,
    ):
        self.model = AutoModelForSeq2SeqLM.from_pretrained(model_path).to(device)
        self.tokenizer = AutoTokenizer.from_pretrained(model_path)
        self.gen_config = GenerationConfig(**gen_config)
        self.inference_batch_size = inference_batch_size


@dataclass
class ListenerOutput:
    programs: List[List[str]]
    idx: Optional[List[List[int]]] = None
    decoded: Optional[List[List[str]]] = None
    decoded_scores: Optional[List[List[float]]] = None
    pruned: Optional[List[List[str]]] = None


class Listener(Agent):
    def __init__(
        self,
        model_path,
        gen_config,
        inference_batch_size=4,
        label_pos="suffix",
        idx: bool = True,
        program_special_token=PROGRAM_SPECIAL_TOKEN,
        utterances_special_token=UTTERANCES_SPECIAL_TOKEN,
        device=None,
    ):
        super().__init__(model_path, gen_config, inference_batch_size, device)
        self.label_pos = label_pos
        self.idx = idx
        self.program_special_token = program_special_token
        self.utterances_special_token = utterances_special_token
        self.utterances_to_string, self.string_to_utterances = (
            get_utterance_processing_functions(
                label_pos, idx, separator=utterances_special_token
            )
        )
        self.device = self.model.device

    def synthesize(self, context, return_scores=False, enforce_consistency=True):
        # If context is a list of utterances, convert to string
        if isinstance(context[0], list):
            context_str = list(map(self.utterances_to_string, context))
        else:
            context_str = context

        context_tokens = self.tokenizer(
            [
                (
                    f"{self.utterances_special_token}{c}"
                    if not c.startswith(self.utterances_special_token)
                    else c
                )
                for c in context_str
            ],
            return_tensors="pt",
            padding=True,
        ).to(self.device)

        decoder_inputs = self.tokenizer(
            [self.program_special_token for _ in context],
            return_tensors="pt",
            add_special_tokens=False,
        ).to(self.device)

        outputs = self.model.generate(
            **context_tokens,
            decoder_input_ids=decoder_inputs.input_ids,
            generation_config=self.gen_config,
            return_dict_in_generate=True,
            output_scores=True,
        )

        decoded_batch = byt5_decode_batch(
            outputs.sequences.reshape(
                (len(context), -1, outputs.sequences.shape[-1])
            ).tolist(),
            skip_position_token=True,
            skip_special_tokens=True,
        )

        consistent_programs = []
        idxs = []
        for decoded, ctx in zip(decoded_batch, context):
            cp = []
            idx = []
            for i, p in enumerate(decoded):
                if enforce_consistency:
                    if consistent(p, ctx):
                        cp.append(p)
                        idx.append(i)
                else:
                    cp.append(p)
                    idx.append(i)

            consistent_programs.append(cp)
            idxs.append(idx)

        logprobs = torch.stack(outputs.scores, dim=1).log_softmax(dim=-1)
        gen_probs = torch.gather(logprobs, 2, outputs.sequences[:, 1:, None]).squeeze(
            -1
        )
        gen_probs.masked_fill_(gen_probs.isinf(), 0)
        scores = gen_probs.sum(-1)
        n_decoded = scores.shape[0]
        n_seq = n_decoded // len(context)
        scores = scores.reshape((len(context), n_seq))
        scores_list = scores.tolist()

        if return_scores:
            return ListenerOutput(consistent_programs, idxs, decoded_batch, scores_list)
        else:
            return ListenerOutput(consistent_programs)