pragnakalp's picture
Update app.py
b9ff43a
raw
history blame
5.74 kB
from __future__ import absolute_import, division, print_function, unicode_literals
import os
import librosa
import librosa.display
import numpy as np
import shutil
import random
import string
import warnings
import datetime
import gradio as gr
import tensorflow as tf
from tqdm import tqdm
from keras.models import Sequential
from keras.layers import Dense
from keras.utils import to_categorical
from keras.layers import Flatten, Dropout, Activation
from keras.layers import Conv2D, MaxPooling2D
from keras.layers import BatchNormalization
from sklearn.model_selection import train_test_split
from tqdm import tqdm
from save_data import flag
warnings.filterwarnings("ignore")
timestamp = datetime.datetime.now()
current_date = timestamp.strftime('%d-%m-%Y')
current_time = timestamp.strftime('%I:%M:%S')
IP = ''
cwd = os.getcwd()
classLabels = ('Angry', 'Fear', 'Disgust', 'Happy', 'Sad', 'Surprised', 'Neutral')
numLabels = len(classLabels)
in_shape = (39,216)
model = Sequential()
model.add(Conv2D(8, (13, 13), input_shape=(in_shape[0], in_shape[1], 1)))
model.add(BatchNormalization(axis=-1))
model.add(Activation('relu'))
model.add(Conv2D(8, (13, 13)))
model.add(BatchNormalization(axis=-1))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 1)))
model.add(Conv2D(8, (3, 3)))
model.add(BatchNormalization(axis=-1))
model.add(Activation('relu'))
model.add(Conv2D(8, (1, 1)))
model.add(BatchNormalization(axis=-1))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 1)))
model.add(Flatten())
model.add(Dense(64))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(Dropout(0.2))
model.add(Dense(numLabels, activation='softmax'))
model.compile(loss='binary_crossentropy', optimizer='adam',
metrics=['accuracy'])
model.load_weights('speech_emotion_detection_ravdess_savee.h5')
def selected_audio(audio):
try:
if audio and audio != 'Please select any of the following options':
post_file_name = audio.lower() + '.wav'
filepath = os.path.join("pre_recoreded",post_file_name)
if os.path.exists(filepath):
print("SELECT file name => ",filepath)
result = predict_speech_emotion(filepath)
print("result = ",result)
return result
except Exception as e:
print(e)
return "ERROR"
def recorded_audio(audio):
get_audio_name = ''
final_output = ''
if audio:
get_audio_name = ''.join([random.choice(string.ascii_letters + string.digits) for n in range(5)])
get_audio_name = get_audio_name + '.wav'
audio_file_path = audio.name
final_output = predict_speech_emotion(audio_file_path)
flag(audio_file_path,get_audio_name,final_output)
return final_output
else:
raise gr.Error("Please record audio first!!!!")
def predict_speech_emotion(filepath):
if os.path.exists(filepath):
print("last file name => ",filepath)
X, sample_rate = librosa.load(filepath, res_type='kaiser_best',duration=2.5,sr=22050*2,offset=0.5)
sample_rate = np.array(sample_rate)
mfccs = librosa.feature.mfcc(y=X, sr=sample_rate, n_mfcc=39)
feature = mfccs
feature = feature.reshape(39, 216, 1)
# np_array = np.array([feature])
np_array = np.array([feature])
prediction = model.predict(np_array)
np_argmax = np.argmax(prediction)
result = classLabels[np_argmax]
return result
def return_audio_clip(audio_text):
post_file_name = audio_text.lower() + '.wav'
filepath = os.path.join("pre_recoreded",post_file_name)
return filepath
with gr.Blocks(css=".gradio-container {background-color: lightgray;} #btn {background-color: orange;}") as blocks:
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>"
+ "Audio Emotion Detection"
+ "</h1>")
with gr.Row():
with gr.Column():
input_audio_text = gr.Dropdown(label="Input Audio",choices=["Please select any of the following options","Angry", "Happy", "Sad", "Disgust","Fear", "Surprise", "Neutral"],value='Please select any of the following options',interactive=True)
audio_ui=gr.Audio()
input_audio_text.change(return_audio_clip,input_audio_text,audio_ui)
output_text = gr.Textbox(label="Detected Emotion!")
sub_btn = gr.Button("Detect Emotion",elem_id="btn")
with gr.Column():
audio=gr.Audio(label="Recored audio",source="microphone", type="file")
recorded_text = gr.Textbox(label="Detected Emotion!")
with gr.Column():
sub_btn2 = gr.Button("Detect Emotion",elem_id="btn")
gr.Markdown("""<p style='text-align: center;'>Feel free to give us your <a href="https://www.pragnakalp.com/contact/" target="_blank">feedback</a> and contact us
at <a href="mailto:letstalk@pragnakalp.com" target="_blank">letstalk@pragnakalp.com</a> if you want to have your own Speech emotion detection system.
We are just one click away. And don't forget to check out more interesting
<a href="https://www.pragnakalp.com/services/natural-language-processing-services/" target="_blank">NLP services</a> we are offering.</p>
<p style='text-align: center;'>Developed by: <a href="https://www.pragnakalp.com" target="_blank">Pragnakalp Techlabs</a></p>""")
sub_btn.click(selected_audio, inputs=input_audio_text, outputs=output_text)
sub_btn2.click(recorded_audio, inputs=audio, outputs=recorded_text)
blocks.launch()