pragnakalp
commited on
Commit
·
1c256c5
1
Parent(s):
be5077b
Upload ser_detection.py
Browse files- ser_detection.py +149 -0
ser_detection.py
ADDED
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import absolute_import, division, print_function, unicode_literals
|
2 |
+
|
3 |
+
from flask import Flask, make_response, render_template, request, jsonify, redirect, url_for, send_from_directory
|
4 |
+
from flask_cors import CORS
|
5 |
+
|
6 |
+
import sys
|
7 |
+
import os
|
8 |
+
|
9 |
+
import librosa
|
10 |
+
import librosa.display
|
11 |
+
import numpy as np
|
12 |
+
|
13 |
+
import warnings
|
14 |
+
import tensorflow as tf
|
15 |
+
from keras.models import Sequential
|
16 |
+
from keras.layers import Dense
|
17 |
+
from keras.utils import to_categorical
|
18 |
+
from keras.layers import Flatten, Dropout, Activation
|
19 |
+
from keras.layers import Conv2D, MaxPooling2D
|
20 |
+
from keras.layers.normalization import BatchNormalization
|
21 |
+
from sklearn.model_selection import train_test_split
|
22 |
+
from tqdm import tqdm
|
23 |
+
# import scipy.io.wavfile as wav
|
24 |
+
# from speechpy.feature import mfcc
|
25 |
+
|
26 |
+
import pyaudio
|
27 |
+
import wave
|
28 |
+
|
29 |
+
warnings.filterwarnings("ignore")
|
30 |
+
|
31 |
+
app = Flask(__name__)
|
32 |
+
CORS(app)
|
33 |
+
|
34 |
+
classLabels = ('Angry', 'Fear', 'Disgust', 'Happy', 'Sad', 'Surprised', 'Neutral')
|
35 |
+
numLabels = len(classLabels)
|
36 |
+
in_shape = (39,216)
|
37 |
+
model = Sequential()
|
38 |
+
|
39 |
+
model.add(Conv2D(8, (13, 13), input_shape=(in_shape[0], in_shape[1], 1)))
|
40 |
+
model.add(BatchNormalization(axis=-1))
|
41 |
+
model.add(Activation('relu'))
|
42 |
+
model.add(Conv2D(8, (13, 13)))
|
43 |
+
model.add(BatchNormalization(axis=-1))
|
44 |
+
model.add(Activation('relu'))
|
45 |
+
model.add(MaxPooling2D(pool_size=(2, 1)))
|
46 |
+
model.add(Conv2D(8, (3, 3)))
|
47 |
+
model.add(BatchNormalization(axis=-1))
|
48 |
+
model.add(Activation('relu'))
|
49 |
+
model.add(Conv2D(8, (1, 1)))
|
50 |
+
model.add(BatchNormalization(axis=-1))
|
51 |
+
model.add(Activation('relu'))
|
52 |
+
model.add(MaxPooling2D(pool_size=(2, 1)))
|
53 |
+
model.add(Flatten())
|
54 |
+
model.add(Dense(64))
|
55 |
+
model.add(BatchNormalization())
|
56 |
+
model.add(Activation('relu'))
|
57 |
+
model.add(Dropout(0.2))
|
58 |
+
|
59 |
+
model.add(Dense(numLabels, activation='softmax'))
|
60 |
+
model.compile(loss='binary_crossentropy', optimizer='adam',
|
61 |
+
metrics=['accuracy'])
|
62 |
+
# print(model.summary(), file=sys.stderr)
|
63 |
+
|
64 |
+
model.load_weights('speech_emotion_detection_ravdess_savee.h5')
|
65 |
+
|
66 |
+
def detect_emotion(file_name):
|
67 |
+
X, sample_rate = librosa.load(file_name, res_type='kaiser_best',duration=2.5,sr=22050*2,offset=0.5)
|
68 |
+
sample_rate = np.array(sample_rate)
|
69 |
+
mfccs = librosa.feature.mfcc(y=X, sr=sample_rate, n_mfcc=39)
|
70 |
+
feature = mfccs
|
71 |
+
print("Feature_shape =>",feature.shape)
|
72 |
+
feature = feature.reshape(39, 216, 1)
|
73 |
+
result = classLabels[np.argmax(model.predict(np.array([feature])))]
|
74 |
+
print("Result ==> ",result)
|
75 |
+
return result
|
76 |
+
|
77 |
+
@app.route("/speech-emotion-recognition/")
|
78 |
+
def emotion_detection():
|
79 |
+
filename = 'audio_files/Happy.wav'
|
80 |
+
|
81 |
+
result = detect_emotion(filename)
|
82 |
+
return result
|
83 |
+
|
84 |
+
@app.route("/record_audio/")
|
85 |
+
def record_audio():
|
86 |
+
CHUNK = 1024
|
87 |
+
FORMAT = pyaudio.paInt16 #paInt8
|
88 |
+
CHANNELS = 2
|
89 |
+
RATE = 44100 #sample rate
|
90 |
+
RECORD_SECONDS = 4
|
91 |
+
|
92 |
+
fileList = os.listdir('recorded_audio')
|
93 |
+
print("Audio File List ==> ",fileList)
|
94 |
+
|
95 |
+
new_wav_file = ""
|
96 |
+
|
97 |
+
if(fileList):
|
98 |
+
filename_list = []
|
99 |
+
for i in fileList:
|
100 |
+
print(i)
|
101 |
+
filename = i.split('.')[0]
|
102 |
+
filename_list.append(filename)
|
103 |
+
|
104 |
+
max_file = max(filename_list)
|
105 |
+
print(type(max_file))
|
106 |
+
|
107 |
+
new_wav_file = int(max_file) + 1
|
108 |
+
else:
|
109 |
+
new_wav_file="1"
|
110 |
+
|
111 |
+
new_wav_file = str(new_wav_file) + ".wav"
|
112 |
+
filepath = os.path.join('recorded_audio', new_wav_file)
|
113 |
+
WAVE_OUTPUT_FILENAME = filepath
|
114 |
+
|
115 |
+
print(WAVE_OUTPUT_FILENAME)
|
116 |
+
|
117 |
+
p = pyaudio.PyAudio()
|
118 |
+
|
119 |
+
stream = p.open(format=FORMAT,
|
120 |
+
channels=CHANNELS,
|
121 |
+
rate=RATE,
|
122 |
+
input=True,
|
123 |
+
frames_per_buffer=CHUNK) #buffer
|
124 |
+
|
125 |
+
print("* recording")
|
126 |
+
|
127 |
+
frames = []
|
128 |
+
|
129 |
+
for i in range(0, int(RATE / CHUNK * RECORD_SECONDS)):
|
130 |
+
data = stream.read(CHUNK)
|
131 |
+
frames.append(data) # 2 bytes(16 bits) per channel
|
132 |
+
|
133 |
+
print("* done recording")
|
134 |
+
|
135 |
+
stream.stop_stream()
|
136 |
+
stream.close()
|
137 |
+
p.terminate()
|
138 |
+
|
139 |
+
wf = wave.open(WAVE_OUTPUT_FILENAME, 'wb')
|
140 |
+
wf.setnchannels(CHANNELS)
|
141 |
+
wf.setsampwidth(p.get_sample_size(FORMAT))
|
142 |
+
wf.setframerate(RATE)
|
143 |
+
wf.writeframes(b''.join(frames))
|
144 |
+
wf.close()
|
145 |
+
return "Audio Recorded"
|
146 |
+
|
147 |
+
if __name__ == "__main__":
|
148 |
+
app.run()
|
149 |
+
|