pragnakalp commited on
Commit
339957b
·
1 Parent(s): 184a6db

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +183 -0
app.py ADDED
@@ -0,0 +1,183 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import absolute_import, division, print_function, unicode_literals
2
+
3
+ from flask import Flask, make_response, render_template, request, jsonify, redirect, url_for, send_from_directory
4
+ from flask_cors import CORS
5
+ import sys
6
+ import os
7
+ import librosa
8
+ import librosa.display
9
+ import numpy as np
10
+ from datetime import date
11
+ import re
12
+ import json
13
+ import email
14
+ import csv
15
+ import datetime
16
+ import smtplib
17
+ import ssl
18
+ from email.mime.text import MIMEText
19
+ import time
20
+ import pytz
21
+ import requests
22
+ import pyaudio
23
+ import wave
24
+ import shutil
25
+ import warnings
26
+ import tensorflow as tf
27
+ import gradio as gr
28
+ from keras.models import Sequential
29
+ from keras.layers import Dense
30
+ from keras.utils import to_categorical
31
+ from keras.layers import Flatten, Dropout, Activation
32
+ from keras.layers import Conv2D, MaxPooling2D
33
+ from keras.layers import BatchNormalization
34
+ from sklearn.model_selection import train_test_split
35
+ from tqdm import tqdm
36
+
37
+ warnings.filterwarnings("ignore")
38
+
39
+ timestamp = datetime.datetime.now()
40
+ current_date = timestamp.strftime('%d-%m-%Y')
41
+ current_time = timestamp.strftime('%I:%M:%S')
42
+ IP = ''
43
+ cwd = os.getcwd()
44
+
45
+
46
+ classLabels = ('Angry', 'Fear', 'Disgust', 'Happy', 'Sad', 'Surprised', 'Neutral')
47
+ numLabels = len(classLabels)
48
+ in_shape = (39,216)
49
+ model = Sequential()
50
+
51
+ model.add(Conv2D(8, (13, 13), input_shape=(in_shape[0], in_shape[1], 1)))
52
+ model.add(BatchNormalization(axis=-1))
53
+ model.add(Activation('relu'))
54
+ model.add(Conv2D(8, (13, 13)))
55
+ model.add(BatchNormalization(axis=-1))
56
+ model.add(Activation('relu'))
57
+ model.add(MaxPooling2D(pool_size=(2, 1)))
58
+ model.add(Conv2D(8, (3, 3)))
59
+ model.add(BatchNormalization(axis=-1))
60
+ model.add(Activation('relu'))
61
+ model.add(Conv2D(8, (1, 1)))
62
+ model.add(BatchNormalization(axis=-1))
63
+ model.add(Activation('relu'))
64
+ model.add(MaxPooling2D(pool_size=(2, 1)))
65
+ model.add(Flatten())
66
+ model.add(Dense(64))
67
+ model.add(BatchNormalization())
68
+ model.add(Activation('relu'))
69
+ model.add(Dropout(0.2))
70
+
71
+ model.add(Dense(numLabels, activation='softmax'))
72
+ model.compile(loss='binary_crossentropy', optimizer='adam',
73
+ metrics=['accuracy'])
74
+ # print(model.summary(), file=sys.stderr)
75
+
76
+ model.load_weights('speech_emotion_detection_ravdess_savee.h5')
77
+
78
+ # app = Flask(__name__)
79
+
80
+ # app._static_folder = os.path.join( "/home/ubuntu/Desktop/nlpdemos/server_demos/speech_emotion/static" )
81
+
82
+
83
+ def selected_audio(audio):
84
+ if audio and audio != 'Please select any of the following options':
85
+ post_file_name = audio.lower() + '.wav'
86
+
87
+ filepath = os.path.join("pre_recoreded",post_file_name)
88
+ if os.path.exists(filepath):
89
+ print("SELECT file name => ",filepath)
90
+ result = predict_speech_emotion(filepath)
91
+ print("result = ",result)
92
+
93
+ return result
94
+
95
+ def recorded_audio(audio):
96
+ try:
97
+ fileList = os.listdir('recorded_audio')
98
+ new_wav_file = ""
99
+
100
+ if(fileList):
101
+ filename_list = []
102
+
103
+ for i in fileList:
104
+ filename = i.split('.')[0]
105
+ filename_list.append(int(filename))
106
+
107
+ max_file = max(filename_list)
108
+ new_wav_file = int(max_file) + 1
109
+ else:
110
+ new_wav_file="1"
111
+
112
+ new_wav_file = str(new_wav_file) + ".wav"
113
+
114
+ # filepath = os.path.join('recorded_audio', new_wav_file)
115
+ # shutil.move(recorded_audio, filepath)
116
+ filepath = 'recorded_audio/22.wav'
117
+ result = predict_speech_emotion(audio.name)
118
+ return result
119
+ except Exception as e:
120
+ print(e)
121
+ return "ERROR"
122
+
123
+
124
+ def predict_speech_emotion(filepath):
125
+ if os.path.exists(filepath):
126
+ print("last file name => ",filepath)
127
+ X, sample_rate = librosa.load(filepath, res_type='kaiser_best',duration=2.5,sr=22050*2,offset=0.5)
128
+ sample_rate = np.array(sample_rate)
129
+ mfccs = librosa.feature.mfcc(y=X, sr=sample_rate, n_mfcc=39)
130
+ feature = mfccs
131
+ feature = feature.reshape(39, 216, 1)
132
+ # np_array = np.array([feature])
133
+ np_array = np.array([feature])
134
+ prediction = model.predict(np_array)
135
+ np_argmax = np.argmax(prediction)
136
+ result = classLabels[np_argmax]
137
+ return result
138
+
139
+
140
+ # demo = gr.Interface(
141
+ # fn=send_audio,
142
+ # inputs=gr.Audio(source="microphone", type="filepath"),
143
+ # outputs="text")
144
+
145
+ # demo.launch()
146
+
147
+ # selected_audio = gr.Dropdown(["Angry", "Happy", "Sad", "Disgust","Fear", "Surprise", "Neutral"],
148
+ # lable = "Input Audio")
149
+ # audio_ui=gr.Audio()
150
+ # text = gr.Textbox()
151
+ # demo = gr.Interface(
152
+ # fn=send_audio,
153
+ # inputs=selected_audio,
154
+ # outputs=[audio_ui,text])
155
+
156
+ # demo.launch()
157
+
158
+ def return_audio_clip(audio_text):
159
+ post_file_name = audio_text.lower() + '.wav'
160
+ filepath = os.path.join("pre_recoreded",post_file_name)
161
+ return filepath
162
+
163
+ with gr.Blocks() as demo:
164
+ gr.Markdown("Select audio or record audio")
165
+ with gr.Row():
166
+ with gr.Column():
167
+ input_audio_text = gr.Dropdown(["Please select any of the following options","Angry", "Happy", "Sad", "Disgust","Fear", "Surprise", "Neutral"],
168
+ lable = "Input Audio",interactive=True)
169
+ audio_ui=gr.Audio()
170
+ input_audio_text.change(return_audio_clip,input_audio_text,audio_ui)
171
+ output_text = gr.Textbox(lable="Prdicted emotion")
172
+ sub_btn = gr.Button("Submit")
173
+
174
+ with gr.Column():
175
+ audio=gr.Audio(source="microphone", type="file",labele="Recored audio")
176
+ recorded_text = gr.Textbox(lable="Prdicted emotion")
177
+ with gr.Column():
178
+ sub_btn2 = gr.Button("Submit")
179
+
180
+ sub_btn.click(selected_audio, inputs=input_audio_text, outputs=output_text)
181
+ sub_btn2.click(recorded_audio, inputs=audio, outputs=recorded_text)
182
+
183
+ demo.launch()