Commit
·
c9c2be1
1
Parent(s):
552dbf1
Update app.py
Browse files
app.py
CHANGED
@@ -1,30 +1,23 @@
|
|
1 |
from __future__ import absolute_import, division, print_function, unicode_literals
|
2 |
|
3 |
from flask import Flask, make_response, render_template, request, jsonify, redirect, url_for, send_from_directory
|
4 |
-
from flask_cors import CORS
|
5 |
-
import sys
|
6 |
import os
|
7 |
-
import
|
8 |
-
import librosa.display
|
9 |
-
import numpy as np
|
10 |
-
from datetime import date
|
11 |
-
import re
|
12 |
-
import json
|
13 |
-
import email
|
14 |
-
import csv
|
15 |
-
import datetime
|
16 |
-
import smtplib
|
17 |
-
import ssl
|
18 |
-
from email.mime.text import MIMEText
|
19 |
-
import time
|
20 |
import pytz
|
21 |
-
import
|
22 |
-
# import pyaudio
|
23 |
-
import wave
|
24 |
import shutil
|
|
|
|
|
25 |
import warnings
|
|
|
|
|
|
|
26 |
import tensorflow as tf
|
27 |
import gradio as gr
|
|
|
|
|
|
|
|
|
28 |
from keras.models import Sequential
|
29 |
from keras.layers import Dense
|
30 |
from keras.utils import to_categorical
|
@@ -32,7 +25,8 @@ from keras.layers import Flatten, Dropout, Activation
|
|
32 |
from keras.layers import Conv2D, MaxPooling2D
|
33 |
from keras.layers import BatchNormalization
|
34 |
from sklearn.model_selection import train_test_split
|
35 |
-
|
|
|
36 |
|
37 |
warnings.filterwarnings("ignore")
|
38 |
|
@@ -81,41 +75,33 @@ model.load_weights('speech_emotion_detection_ravdess_savee.h5')
|
|
81 |
|
82 |
|
83 |
def selected_audio(audio):
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
|
|
93 |
return result
|
|
|
|
|
|
|
94 |
|
95 |
def recorded_audio(audio):
|
|
|
|
|
96 |
try:
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
filename_list = []
|
102 |
-
|
103 |
-
for i in fileList:
|
104 |
-
filename = i.split('.')[0]
|
105 |
-
filename_list.append(int(filename))
|
106 |
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
new_wav_file="1"
|
111 |
-
|
112 |
-
new_wav_file = str(new_wav_file) + ".wav"
|
113 |
-
|
114 |
-
# filepath = os.path.join('recorded_audio', new_wav_file)
|
115 |
-
# shutil.move(recorded_audio, filepath)
|
116 |
-
filepath = 'recorded_audio/22.wav'
|
117 |
-
result = predict_speech_emotion(audio.name)
|
118 |
-
return result
|
119 |
except Exception as e:
|
120 |
print(e)
|
121 |
return "ERROR"
|
@@ -137,31 +123,14 @@ def predict_speech_emotion(filepath):
|
|
137 |
return result
|
138 |
|
139 |
|
140 |
-
# demo = gr.Interface(
|
141 |
-
# fn=send_audio,
|
142 |
-
# inputs=gr.Audio(source="microphone", type="filepath"),
|
143 |
-
# outputs="text")
|
144 |
-
|
145 |
-
# demo.launch()
|
146 |
-
|
147 |
-
# selected_audio = gr.Dropdown(["Angry", "Happy", "Sad", "Disgust","Fear", "Surprise", "Neutral"],
|
148 |
-
# lable = "Input Audio")
|
149 |
-
# audio_ui=gr.Audio()
|
150 |
-
# text = gr.Textbox()
|
151 |
-
# demo = gr.Interface(
|
152 |
-
# fn=send_audio,
|
153 |
-
# inputs=selected_audio,
|
154 |
-
# outputs=[audio_ui,text])
|
155 |
-
|
156 |
-
# demo.launch()
|
157 |
-
|
158 |
def return_audio_clip(audio_text):
|
159 |
post_file_name = audio_text.lower() + '.wav'
|
160 |
filepath = os.path.join("pre_recoreded",post_file_name)
|
161 |
return filepath
|
162 |
|
163 |
with gr.Blocks(css=".gradio-container {background-color: lightgray;}") as demo:
|
164 |
-
gr.Markdown("
|
|
|
165 |
with gr.Row():
|
166 |
with gr.Column():
|
167 |
input_audio_text = gr.Dropdown(lable="Input Audio",choices=["Please select any of the following options","Angry", "Happy", "Sad", "Disgust","Fear", "Surprise", "Neutral"],interactive=True)
|
|
|
1 |
from __future__ import absolute_import, division, print_function, unicode_literals
|
2 |
|
3 |
from flask import Flask, make_response, render_template, request, jsonify, redirect, url_for, send_from_directory
|
|
|
|
|
4 |
import os
|
5 |
+
import sys
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
import pytz
|
7 |
+
import librosa
|
|
|
|
|
8 |
import shutil
|
9 |
+
import random
|
10 |
+
import string
|
11 |
import warnings
|
12 |
+
import datetime
|
13 |
+
import librosa.display
|
14 |
+
import numpy as np
|
15 |
import tensorflow as tf
|
16 |
import gradio as gr
|
17 |
+
|
18 |
+
# import pyaudio
|
19 |
+
# import wave
|
20 |
+
from tqdm import tqdm
|
21 |
from keras.models import Sequential
|
22 |
from keras.layers import Dense
|
23 |
from keras.utils import to_categorical
|
|
|
25 |
from keras.layers import Conv2D, MaxPooling2D
|
26 |
from keras.layers import BatchNormalization
|
27 |
from sklearn.model_selection import train_test_split
|
28 |
+
|
29 |
+
from save_data import flag
|
30 |
|
31 |
warnings.filterwarnings("ignore")
|
32 |
|
|
|
75 |
|
76 |
|
77 |
def selected_audio(audio):
|
78 |
+
try:
|
79 |
+
if audio and audio != 'Please select any of the following options':
|
80 |
+
post_file_name = audio.lower() + '.wav'
|
81 |
+
|
82 |
+
filepath = os.path.join("pre_recoreded",post_file_name)
|
83 |
+
if os.path.exists(filepath):
|
84 |
+
print("SELECT file name => ",filepath)
|
85 |
+
result = predict_speech_emotion(filepath)
|
86 |
+
print("result = ",result)
|
87 |
+
|
88 |
return result
|
89 |
+
except Exception as e:
|
90 |
+
print(e)
|
91 |
+
return "ERROR"
|
92 |
|
93 |
def recorded_audio(audio):
|
94 |
+
|
95 |
+
get_audio_name = ''
|
96 |
try:
|
97 |
+
if audio:
|
98 |
+
get_audio_name = ''.join([random.choice(string.ascii_letters + string.digits) for n in range(5)])
|
99 |
+
audio_file_path = audio.name
|
100 |
+
final_output = predict_speech_emotion(audio_file_path)
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
+
flag(audio_file_path,get_audio_name,final_output)
|
103 |
+
|
104 |
+
return final_output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
except Exception as e:
|
106 |
print(e)
|
107 |
return "ERROR"
|
|
|
123 |
return result
|
124 |
|
125 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
def return_audio_clip(audio_text):
|
127 |
post_file_name = audio_text.lower() + '.wav'
|
128 |
filepath = os.path.join("pre_recoreded",post_file_name)
|
129 |
return filepath
|
130 |
|
131 |
with gr.Blocks(css=".gradio-container {background-color: lightgray;}") as demo:
|
132 |
+
gr.Markdown("""<h1 style='text-align: center;>Audio Emotion Detection</h1>""")
|
133 |
+
|
134 |
with gr.Row():
|
135 |
with gr.Column():
|
136 |
input_audio_text = gr.Dropdown(lable="Input Audio",choices=["Please select any of the following options","Angry", "Happy", "Sad", "Disgust","Fear", "Surprise", "Neutral"],interactive=True)
|