Spaces:
Running
Running
import os | |
import gc | |
import csv | |
import socket | |
import json | |
import huggingface_hub | |
import requests | |
import re as r | |
import gradio as gr | |
import pandas as pd | |
from huggingface_hub import Repository | |
from urllib.request import urlopen | |
# from transformers import AutoTokenizer, AutoModelWithLMHead | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
## connection with HF datasets | |
HF_TOKEN = os.environ.get("HF_TOKEN") | |
# DATASET_NAME = "emotion_detection_dataset" | |
# DATASET_REPO_URL = f"https://huggingface.co/datasets/pragnakalp/{DATASET_NAME}" | |
DATASET_REPO_URL = "https://huggingface.co/datasets/pragnakalp/emotion_detection_dataset" | |
DATA_FILENAME = "emotion_detection_logs.csv" | |
DATA_FILE = os.path.join("emotion_detection_logs", DATA_FILENAME) | |
DATASET_REPO_ID = "pragnakalp/emotion_detection_dataset" | |
print("is none?", HF_TOKEN is None) | |
try: | |
hf_hub_download( | |
repo_id=DATASET_REPO_ID, | |
filename=DATA_FILENAME, | |
cache_dir=DATA_DIRNAME, | |
force_filename=DATA_FILENAME | |
) | |
except: | |
print("file not found") | |
repo = Repository( | |
local_dir="emotion_detection_logs", clone_from=DATASET_REPO_URL, use_auth_token=HF_TOKEN | |
) | |
SENTENCES_VALUE = """Raj loves Simran.\nLast year I lost my Dog.\nI bought a new phone!\nShe is scared of cockroaches.\nWow! I was not expecting that.\nShe got mad at him.""" | |
## load model | |
cwd = os.getcwd() | |
model_path = os.path.join(cwd) | |
try: | |
tokenizer = AutoTokenizer.from_pretrained("mrm8488/t5-base-finetuned-emotion") | |
# model_base = AutoModelWithLMHead.from_pretrained(model_path) | |
# Instead of AutoModelWithLMHead | |
model_base = AutoModelForCausalLM.from_pretrained(model_path) | |
except Exception as e: | |
print(f"Error loading model: {e}") | |
def getIP(): | |
ip_address = '' | |
try: | |
d = str(urlopen('http://checkip.dyndns.com/') | |
.read()) | |
return r.compile(r'Address: (\d+\.\d+\.\d+\.\d+)').search(d).group(1) | |
except Exception as e: | |
print("Error while getting IP address -->",e) | |
return ip_address | |
def get_location(ip_addr): | |
location = {} | |
try: | |
ip=ip_addr | |
req_data={ | |
"ip":ip, | |
"token":"pkml123" | |
} | |
url = "https://demos.pragnakalp.com/get-ip-location" | |
# req_data=json.dumps(req_data) | |
# print("req_data",req_data) | |
headers = {'Content-Type': 'application/json'} | |
response = requests.request("POST", url, headers=headers, data=json.dumps(req_data)) | |
response = response.json() | |
print("response======>>",response) | |
return response | |
except Exception as e: | |
print("Error while getting location -->",e) | |
return location | |
""" | |
generate emotions of the sentences | |
""" | |
def get_emotion(text): | |
# input_ids = tokenizer.encode(text + '</s>', return_tensors='pt') | |
input_ids = tokenizer.encode(text, return_tensors='pt') | |
output = model_base.generate(input_ids=input_ids, | |
max_length=2) | |
dec = [tokenizer.decode(ids) for ids in output] | |
label = dec[0] | |
gc.collect() | |
return label | |
def generate_emotion(article): | |
table = {'Input':[], 'Detected Emotion':[]} | |
if article.strip(): | |
sen_list = article | |
sen_list = sen_list.split('\n') | |
while("" in sen_list): | |
sen_list.remove("") | |
sen_list_temp = sen_list[0:] | |
print(sen_list_temp) | |
results_dict = [] | |
results = [] | |
for sen in sen_list_temp: | |
if(sen.strip()): | |
cur_result = get_emotion(sen) | |
results.append(cur_result) | |
results_dict.append( | |
{ | |
'sentence': sen, | |
'emotion': cur_result | |
} | |
) | |
table = {'Input':sen_list_temp, 'Detected Emotion':results} | |
gc.collect() | |
save_data_and_sendmail(article,results_dict,sen_list, results) | |
return pd.DataFrame(table) | |
else: | |
raise gr.Error("Please enter text in inputbox!!!!") | |
""" | |
Save generated details | |
""" | |
def save_data_and_sendmail(article,results_dict,sen_list,results): | |
try: | |
ip_address= getIP() | |
print(ip_address) | |
location = get_location(ip_address) | |
print(location) | |
add_csv = [article,results_dict,ip_address,location] | |
with open(DATA_FILE, "a") as f: | |
writer = csv.writer(f) | |
# write the data | |
writer.writerow(add_csv) | |
commit_url = repo.push_to_hub() | |
print("commit data :",commit_url) | |
url = 'https://pragnakalpdev33.pythonanywhere.com/HF_space_emotion_detection_demo' | |
# url = 'https://pragnakalpdev35.pythonanywhere.com/HF_space_emotion_detection' | |
myobj = {"sentences":sen_list,"gen_results":results,"ip_addr":ip_address,'loc':location} | |
response = requests.post(url, json = myobj) | |
print("response=-----=",response.status_code) | |
except Exception as e: | |
return "Error while sending mail" + str(e) | |
return "Successfully save data" | |
""" | |
UI design for demo using gradio app | |
""" | |
inputs = gr.Textbox(value=SENTENCES_VALUE,lines=3, label="Sentences",elem_id="inp_div") | |
outputs = [gr.Dataframe(row_count = (3, "dynamic"), col_count=(2, "fixed"), label="Here is the Result", headers=["Input","Detected Emotion"],wrap=True)] | |
demo = gr.Interface( | |
generate_emotion, | |
inputs, | |
outputs, | |
title="Emotion Detection", | |
css=".gradio-container {background-color: lightgray} #inp_div {background-color: #FB3D5;}", | |
article="""<p style='text-align: center;'>Provide us your <a href="https://www.pragnakalp.com/contact/" target="_blank">feedback</a> on this demo and feel free | |
to contact us at <a href="mailto:letstalk@pragnakalp.com" target="_blank">letstalk@pragnakalp.com</a> if you want to have your own Emotion Detection system. | |
We will be happy to serve you for your requirement. And don't forget to check out more interesting | |
<a href="https://www.pragnakalp.com/services/natural-language-processing-services/" target="_blank">NLP services</a> we are offering.</p> | |
<p style='text-align: center;'>Developed by: <a href="https://www.pragnakalp.com" target="_blank">Pragnakalp Techlabs</a></p>""" | |
) | |
demo.launch() |